Clavel et al.

Michael B. Clavel, Student Member, IEEE, Mantu K. Hudait, Senior Member, IEEE

Abstract—The band alignment properties of amorphous Al₂O₃ on strain-engineered biaxial tensile-strained epitaxial Ge, grown *in-situ* by molecular beam epitaxy on In_xGa_{1-x}As virtual substrates, are presented. X-ray photoelectron spectroscopy investigation demonstrated an increase in the valence band offset of the Al₂O₃/strained Ge system with increasing tensile strain. For Ge strain-states of 1.14%, 1.6%, and 1.94%, the corresponding valence band offsets were found to be 4.43 ± 0.1 eV, 3.95 ± 0.1 eV, and 4.55 ± 0.1 eV, respectively, demonstrating a ~0.8 eV increase as compared to Ge grown on GaAs. The observed enhancement in the valence band discontinuity between tensile-strained Ge and Al₂O₃ offers a unique and novel path for the simultaneous improvement of hole mobility (*via* strain) and hole confinement (*via* a larger valence band offset) in future low-power and high-performance Ge-based nanoscale pMOS devices.

Index Terms—Energy band alignment, Al₂O₃, strained Ge, x-ray photoelectron spectroscopy (XPS).

I. INTRODUCTION

NONTINUATION of the aggressive reduction in silicon (Si) metal-oxide-semiconductor complimentary (CMOS) technology has revealed fundamental physical limitations for future Si device scaling. To overcome these challenges, new channel materials and device architectures offering improved drive current, lower operating voltage, and steep sub-threshold dynamics are being extensively investigated [1]-[3]. Among the potential candidates for extending CMOS beyond 10 nm, germanium (Ge) has attracted much attention due to its low band gap, high carrier mobility, and process compatibility with current CMOS process technology [4]. In particular, strained Ge has been investigated for use as the channel material in future high performance [5], [6] and low-power [7] logic, as well as the gain medium in on-Si, group IV-based photonics [8], [9]. However, little attention has been devoted to strain-induced modification of the oxide/semiconductor band alignment [10], [11], essential in evaluating channel carrier confinement.

In this letter, we report on the effective modulation of the band alignment between amorphous (a) Al_2O_3 and biaxial tensile-strained (ϵ) Ge epilayers grown on $In_xGa_{1-x}As$ stressors. Moreover, we demonstrate that the contribution to the band alignment enhancement reflects the combined effects of the ϵ -Ge strain-state and the intrinsic band discontinuities between ϵ -Ge and the underlying strain template.

Manuscript received March 23, 2016. M. Clavel acknowledges financial support from the NSF (grant numbers ECCS-1348653 and ECCS-1507950). M. Clavel and M. K. Hudait are with the Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061 USA (mantu.hudait@vt.edu).

II. EXPERIMENTAL

In this study, 15 nm - 30 nm thick epitaxially strained Ge layers were grown *in-situ* on $In_xGa_{1-x}As$ virtual substrates (VS) utilizing solid-source molecular beam epitaxy (MBE). Strain modulation within the Ge epilayers was achieved by modification of the indium (In) alloy composition in the VS. Three In compositions were selected in order to investigate the effects of varying biaxial tensile strain on the band alignment between ϵ -Ge and a-Al₂O₃, specifically: (i) $In_{0.18}Ga_{0.82}As$ (1.14% ϵ), (ii) $In_{0.24}Ga_{0.76}As$ (1.6% ϵ), and (iii) $In_{0.29}Ga_{0.71}As$ (1.94% ϵ). Full details regarding the growth and materials characterization (and associated methodologies) of the Ge/(In)GaAs heterostructures are reported elsewhere [7], [12].

Subsequently, 1.5 nm and 10 nm a-Al₂O₃ films were deposited at 200°C by atomic layer deposition (ALD) using trimethylaluminum and deionized H₂O. Prior to oxide deposition, all samples were stripped of native oxide in dilute HF for 60 s. Immediately following Al₂O₃ ALD, the samples were transferred to a PHI Quantera SXM x-ray photoelectron spectroscopy (XPS) system for band alignment characterization following the methods described in [7], [12]. A low-energy electron flood gun was utilized to compensate oxide electron loss during spectral acquisition and minimize positive charge accumulation on the sample surface. Statistical deviation in the Au $4f_{7/2}$ core level binding energy of a Au standard was used to derive an experimental uncertainty of $\pm 0.04\%$, with subsequent uncertainty estimated using a root sum square approach.

Additionally, in order to broaden the applicability of the measured band alignment data to n- *and* pMOS devices, strain-dependent calculations of the Ge band edges were performed following the deformation potential theory approach described in [13] using the material parameters listed in Table I.

III. RESULTS AND DISCUSSION

Previous nonlocal pseudopotential calculations [14] of the strained Ge band structure have revealed a crossover point, $\varepsilon \approx$

TABLE I							
GERMANIUM MATERIAL PARAMETERS							
Quantity	Symbol	Units	Value ^[Ref.]				
Lattice Constant	a_0	Å	5.658 ^[15]				
Elastic Constants	c_{11}	1011 dyn/cm2	12.60 ^[15]				
	<i>C</i> ₁₂	1011 dyn/cm2	$4.40^{[15]}$				
	C ₄₄	1011 dyn/cm2	6.77 ^[15]				
Deformation Potentials	а	eV	-9.48 ^[16]				
	b	eV	$-2.86^{[17]}$				
	$\Xi_d + \frac{1}{3}\Xi_u$	eV	-2.36 ^[17]				
Direct Gap	E_g^{Γ}	eV	0.805 ^[13]				
Indirect Gap	E_{g}^{L}	eV	0.664 ^[13]				
Spin-Orbit Splitting	Δ_{SO}	eV	0.296 ^[14]				

IEEE-EDL-2016-03-0470 – Manuscript

Clavel et al.

Fig. 1. Calculated 293 K bandgap-strain dependence for Ge using deformation potential theory [13] and the material parameters found in [13]–[17]. Symbols (blue) represent the expected bandgap value for the strain-states studied in this work. Right inset illustrates the experimental Raman wavenumber shift with increasing Ge strain. Left inset shows the experimental Ge epilayer strain independently determined *via* x-ray diffraction and Raman spectroscopy.

1.5%, at which the Γ -valley minimum supersedes the L-valley minimum as the lowest conduction band (CB) edge. As a result, the L-valley carrier population in ϵ -Ge is expected to reduce for strain states approaching $\epsilon \approx 1.5\%$. To account for this change, the bandgap for the lowest CB minimum (at a given ϵ) is most appropriate when determining the conduction band offset (ΔE_C) at the Al₂O₃/ ϵ -Ge heterointerface. Fig. 1 shows the dependence of the calculated 293 K Ge bandgap on the magnitude of the inplane biaxial tensile strain. As can be seen in Fig. 1, a crossover in the Γ - and L-valley band edges was indeed observed at $\epsilon = 1.52\%$. Congruently, employing the experimental Ge epilayer strain determined *via* Raman spectroscopy (Fig. 1 right inset) and x-ray diffraction analysis (Fig. 1 left inset), the calculated bandgaps for the 1.14\%, 1.6\%, and 1.94\% ϵ -Ge were 0.56 eV (L-*lh*), 0.50 eV (Γ -*lh*), and 0.43 eV (Γ -*lh*), respectively.

Fig. 2 shows representative XPS spectra recorded from the moderately strained (1.14%) a-Al₂O₃/ ε -Ge heterointerface, including: (a) the Al 2p core level (CL) and valence band maxima (VBM) from 10 nm a-Al₂O₃ deposited on 1.14% ε -Ge; (b) the Ge 3d CL and VBM from the 1.14% ε -Ge epilayer; and (c) the Al 2p and Ge 3d CLs from 1.5 nm a-Al₂O₃ deposited on 1.14% ε -Ge. The valence band offset (ΔE_V) can be determined using the method proposed by Kraut *et al.* [18] in conjunction with the measured CL and VBM binding energies, *i.e.*:

 $\Delta E_V = \left(E_{Al_2O_3}^{Al_2O_3} - E_{VBM}^{Al_2O_3}\right) - \left(E_{Ge3d}^{\varepsilon-Ge} - E_{VBM}^{\varepsilon-Ge}\right) - \Delta CL(i) (1)$ where $E_{Al_2D}^{Al_2O_3}$ and $E_{Ge3d}^{\varepsilon-Ge}$ are the CL binding energies for a-Al₂O₃ and Ge, respectively, E_{VBM} is the VBM for each material, and $\Delta CL(i)$ is the binding energy separation between the interfacial Al 2p and Ge 3d CLs, *i.e.* $E_{Al_2D}^{Al_2O_3} - E_{Ge3d}^{\varepsilon-Ge}$. Linear regression of the onset of valence band emission was used to determine E_{VBM} for each material [7], [12]. Similarly, the experimental a-Al₂O₃ band gap, $E_g^{Al_2O_3}$, was extracted from a linear fitting of the O 1s loss spectra [19], [20]. Using the measured values for ΔE_V and $E_g^{Al_2O_3}$, the conduction band offset

Fig. 2. XPS spectra of (a) Al 2p CL $(E_{Al2D}^{Al_2O_3})$ and VBM $(E_{VMB}^{Al_2D_3})$ from the 10 nm Al₂O₃/ ε -Ge sample, (b) Ge 3d CL $(E_{Ge3d}^{\varepsilon-Ge})$ and ε -Ge VBM $(E_{VBM}^{\varepsilon-Ge})$ from the ε -Ge virtual substrate, and (c) Ge 3d (E_{Ge3d}^{ε}) and Al 2p (E_{Al2D}^{ε}) from the 1.5 nm Al₂O₃/ ε -Ge interface for the 1.14% tensile strain Al₂O₃/ ε -Ge structure.

 (ΔE_C) was calculated by [7], [12], [20]:

$$\Delta E_c = E_g^{At_2 O_3} - E_g^{\varepsilon - Ge} + \Delta E_V \tag{2}$$

where $E_g^{\varepsilon-Ge}$ is the band gap energy of ε -Ge. Following the procedures defined above and using the calculated $E_g^{\varepsilon-Ge}$ at each strain state, the band discontinuities for each a-Al₂O₃/ ε -Ge heterointerface were determined, as summarized in Table II.

It is important to note that the band offset values presented in Table II are sensitive to several charging mechanisms commonly observed in XPS analysis, including x-ray irradiation and/or а built-in potential within the oxide/semiconductor heterostructure. These mechanisms serve to modify the energy of the escaping photoelectron, resulting in a shift of the measured binding energy due to an effective accumulation of charge within the sample [21]. To examine the impact of such modifications on the oxide/semiconductor band alignment, the CL spectra shown in Fig. 2 are presented both before (green) and after (red) saturation of the sample surface by way of extended x-ray beam exposure. A maximum charging-induced shift, E_{ch} , of 0.57 \pm 0.04 eV was observed for

TABLE II
SUMMARY OF THE MEASURED AND CALCULATED XPS DATA FROM THE
AL_2O_3/ϵ -Ge heterostructures investigated in this work

Structure	Measured Al ₂ O ₃ E _g (eV)	Calculated ε-Ge E _g (eV)	$\begin{array}{c} Measured \\ \Delta E_V \left(eV \right) \end{array}$	$\begin{array}{c} Calculated \\ \Delta E_{C}\left(eV\right) \end{array}$
Al ₂ O ₃ /1.14% ε-Ge	6.59 ± 0.04	0.56 (L-valley)	4.43 ± 0.1	1.6 ± 0.1
Al ₂ O ₃ /1.6% ɛ-Ge	6.79 ± 0.04	0.50 (Γ-valley)	3.95 ± 0.1	2.34 ± 0.1
Al ₂ O ₃ /1.94% ε-Ge	6.78 ± 0.04	0.43 (Γ-valley)	4.55 ± 0.1	1.8 ± 0.1

Clavel et al.

Fig. 3. (a) Experimental valence band (ΔE_V) and calculated conduction band (ΔE_C) offsets for the a-Al₂O₃/ ε -Ge system studied in this work as well as a-Al₂O₃/Ge/GaAs. (b) Comparison of the shift in energy band edge due to strain and the magnitude of the experimental band offset shifts with respect to the unstrained a-Al₂O₃/Ge/GaAs heterostructure.

the Al 2p_{3/2} CL recorded from the 10 nm Al₂O₃/1.14% ε-Ge sample, decreasing to 0.12 ± 0.04 eV for the ultra-thin 1.5 nm Al₂O₃ oxide on the same structure. As can be seen in Figs. 2b and 2c, no predominant shift in the Ge 3d_{5/2} CL binding energy was observed, indicating an asymmetric accumulation of charge within the $Al_2O_3/1.14\%$ ϵ -Ge structure that strongly depends on oxide thickness. Recent results [22] suggest that the formation of gap states on the Al₂O₃ surface modifies the Al₂O₃ charge neutrality level, CNL^{Al₂O₃, raising it above the charge} neutrality level of Ge, CNL^{Ge}, and resulting in electron transfer from Ge to Al₂O₃. The manifestation of this charge transfer would be a shift in the measured CLs to lower binding energies, which can indeed be observed in Figs. 2a and 2c. These results suggest that encapsulation of the oxide surface, e.g., via the deposition of < 10 Å of metal, may enhance accuracy when investigating practical MOS gate structures. Nevertheless, for this work, the measured CLs for each material were compensated using the observed E_{ch} in order to provide a more representative view of the Al₂O₃/ε-Ge band alignment.

Fig. 3a shows the empirical and calculated band offset parameters for the a-Al₂O₃/ ϵ -Ge structures considered in this study in addition to the measured band offsets of a-Al₂O₃ deposited on Ge grown on GaAs. Similarly, Fig. 3b highlights the magnitude of the a-Al₂O₃/ ϵ -Ge band offset shifts with respect to the a-Al₂O₃/Ge/GaAs heterostructure in comparison to the calculated band edge shifts at the Γ - and L-valley CB (purple, green) and heavy- and light-hole VBM (red, blue) for increasing strain. As can be seen from Fig. 3a, ΔE_V (blue, symbol) demonstrated a positive trend with respect to the tensile strain in the Ge epilayer. Moreover, the magnitude of the enhancement in ΔE_V (~0.8 eV, Fig. 3b) for the highly strained $(1.94\% \epsilon)$ structure was found to be larger than the Ge band gap, suggesting a combined influence on the a-Al₂O₃/ ϵ -Ge band alignment from both the strain-state of the epitaxial Ge as well as the underlying ɛ-Ge/In_xGa_{1-x}As band discontinuities. The observed shift in ΔE_V was found to differ from similar structures grown on GeSn- [10] and SiGe-based [11] strain templates, thus suggesting fundamentally different roles in interface band structure modification between III-V- and group IV-based pseudomorphic templates. Whereas modification of the oxide/ɛ-Ge band alignment for group IV-based virtual substrates favors strain-induced band gap reduction, III-Vbased strain templates appear to leverage both larger intrinsic IV/III-V band discontinuities [7], [23] as well as strain-related band structure alterations in the pseudomorphic Ge layer.

Lastly, it can be posited that the higher strain-states investigated in this work also play a role in the increased straindependency of the a-Al₂O₃/ ε -Ge band offsets. In this regard, the increased surface energy of the highly strained Ge epilayer alters the near-interfacial O-O interaction in a-Al₂O₃. Note that the valence band (VB) electron states in metal oxides are derived from the 2p states of the O anions [24]. Accordingly, strain-related modification of the O-O interaction in nearinterfacial a-Al₂O₃ could result in associated changes in the a-Al₂O₃ VB structure, and thus a lowering of the a-Al₂O₃ VBM (*i.e.*, an increase in ΔE_V) [25]. Thus, the incorporation of increased strain into Ge films grown on III-V stressors may offer several advantages for the design of ε -Ge-based *p*-channel field-effect transistors, including additional enhancement to channel hole confinement as well as improved hole mobilities.

IV. CONCLUSION

The effect of biaxial tensile strain on the energy band discontinuities between a-Al₂O₃ and epitaxial ε -Ge was systematically investigated. The valence band offset, ΔE_V , was found to reflect strain-dependent and heterostructural (ε -Ge/In_xGa_{1-x}As) enhancements. Moreover, a significant increase in ΔE_V , up to ~0.8 eV, was observed for a-Al₂O₃ deposited on 1.94% ε -Ge (4.55 ± 0.1 eV) as compared to unstrained a-Al₂O₃/Ge/GaAs (3.76 ± 0.1 eV). The ability to substantially augment ΔE_V via tensile strain suggests an approach to reduce gate leakage current, and therefore power dissipation, in future ε -Ge-based pMOS technology. In conjunction with strain-induced hole mobility enhancement, the provided band alignment parameters offer an exciting and innovative direction for realizing ε -Ge devices with high drive currents, reduced gate leakage, and flexibility in device application.

ACKNOWLEDGMENT

The authors acknowledge the support of the Intel Corporation and are grateful to Prof. Suman Datta for fruitful technical discussions.

- [1] A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as energyefficient electronic switches," Nature, vol. 479, no. 7373, pp. 329-337, Nov. 2011. DOI:10.1038/nature10679
- A. C. Seabaugh and Q. Zhang, "Low-voltage tunnel transistors for beyond [2] CMOS logic," Proc. IEEE, vol. 98, no. 12, pp. 2095-2110, Dec. 2010. DOI: 10.1109/JPROC.2010.2070470
- M. Heyns, A. Alian, G. Brammertz, M. Caymax, Y.C. Chang, L.K. Chu, [3] B. De Jaeger, G. Eneman, F. Gencarelli, G. Groeseneken, G. Hellings, A. Hikavyy, T.Y. Hoffmann, M. Houssa, C. Huyghebaert, D. Leonelli, D. Lin, R. Loo, W. Magnus, C. Merckling, M. Meuris, J. Mitard, L. Nyns, T. Orzali, R. Rooyackers, S. Sioncke, B. Soree, X. Sun, A. Vandooren, A.S. Verhulst, B. Vincent, N. Waldron, G. Wang, W.E. Wang, and L. Witters, "Advancing CMOS beyond the Si roadmap with Ge and III/V devices," in Proc. IEEE Int. Electron Devices Meeting (IEDM), Washington, DC, USA, 2011, pp. 13.1.1-13.1.4. DOI: 10.1109/IEDM.2011.6131543
- P. D. Nguyen, M. Clavel, P. S. Goley, J.-S. Liu, N. P. Allen, L. J. Guido, [4] and M. K. Hudait, "Heteroepitaxial Ge MOS devices on Si using composite AlAs/GaAs buffer," IEEE J. Electron Devices Soc., vol. 3, no. 4, pp. 341-348, July 2015. DOI: 10.1109/JEDS.2015.2425959
- [5] S. Gupta, V. Moroz, L. Smith, Q. Lu, and K. C. Saraswat, "A group IV solution for 7 nm FinFET CMOS: Stress engineering using Si, Ge, and Sn," in Proc. IEEE Int. Electron Devices Meeting (IEDM), Washington, DC, USA, 2013, pp. 26.3.1-26.3.4. DOI: 10.1109/IEDM.2013.6724696
- A. Agrawal, M. Barth, G. B. Rayner Jr., Arun V. T., C. Eichfeld, G. Lavallee, S.-Y. Yu, X. Sang, S. Brookes, Y. Zheng, Y.-J. Lee, Y.-R. Lin, C.-H. Wu, C-H. Ko, J. LeBeau, R. Engel-Herbert, S. E. Mohney, Y.-C. Yeo, and S. Datta, "Enhancement mode strained (1.3%) germanium quantum well FinFET (WFin=20nm) with high mobility (µHole=700 cm²/Vs), low EOT (~0.7nm) on bulk silicon substrate," in Proc. IEDM Tech. Dig., San Francisco, CA, USA, 2014, pp. 16.4.1-16.4.4. DOI: 10.1109/IEDM.2014.7047064
- M. Clavel, P. Goley, N. Jain, Y. Zhu, and M. K. Hudait, "Strain-[7] engineered biaxial tensile epitaxial germanium for high-performance Ge/InGaAs tunnel field-effect transistors," IEEE J. Electron Devices Soc., vol. 3, no. 3, pp. 184-193, May 2015. DOI: 10.1109/JEDS.2015.2394743
- R. Soref, "The past, present, and future of silicon photonics," IEEE J. Sel. [8] Top. Quantum Electron., vol. 12, no. 6, pp. 1678-1687, Nov. 2006. DOI: 10.1109/JSTQE.2006.883151
- Y. Cai, Z. Han, X. Wang, R. E. Camacho-Aguilera, L. C. Kimerling, J. [9] Michel, and J. Liu, "Analysis of threshold current behavior for bulk and quantum-well germanium laser structures," IEEE J. Sel. Top. Quantum Electron, vol. 19, no. 4, pp. 1901009, Feb. 2013. DOI: 10.1109/JSTQE.2013.2247573
- [10] H.-Y. Chou, V. V. Afanas'ev, M. Houssa, A. Stesmans, B. Vincent, F. Gencarelli, Y. Shimura, C. Merckling, R. Loo, O. Nakatsuka, and S. Zaima, "Band alignment at interfaces of amorphous Al2O3 with Ge1-xSnxand strained Ge-based channels," Appl. Phys. Lett., vol. 104, no. 20, pp. 202107-1-202107-5, May 2014. DOI: 10.1063/1.4878558
- [11] S. Y. Chiam, W. K. Chim, C. Pi, A. C. H. Huan, S. J. Wang, J. S. Pan, S. Turner, and J. Zhang, "Band alignment of yttrium oxide on various relaxed and strained semiconductor substrates," J. Appl. Phys., vol. 103, no. 8, pp. 083702-1-083702-12, Apr. 2008. DOI: 10.1063/1.2904928
- [12] M. Clavel, D. Saladukha, P. S. Goley, T. J. Ochalski, F. Murphy-Armando, R. J. Bodnar, and M. K. Hudait, "Heterogeneously-grown tunable tensile strained germanium on silicon for photonic devices," ACS Appl. Mater. Interfaces, vol. 7, no. 48, pp. 26470-26481, Nov. 2015. DOI: 10.1021/acsami.5b07385
- [13] J. Menendez and J. Kouvetakis, "Type-I Ge/Ge1-x-ySixSny strained-layer heterostructures with a direct Ge bandgap," Appl. Phys. Lett., vol. 85, no. 7, pp. 1175–1177, June 2004. DOI: 10.1063/1.1784032
- [14] M. V. Fischetti and S. E. Laux, "Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys," J. Appl. Phys., vol. 80, no. 4, pp. 2234-2252, Aug. 1996. DOI: 10.1063/1.363052
- [15] Handbook Series on Semiconductor Parameters, World Scientific Publishing Co., Singapore, 1996, pp. 33-58.
- [16] C. G. Van de Walle, "Band lineups and deformation potentials in the model-solid theory," Phys. Rev. B, vol. 39, no. 3, pp. 1871-1883, Jan. 1989. DOI: 10.1103/PhysRevB.39.1871
- [17] M. Chandrasekhar and F. Pollak, "Effects of uniaxial stress on the electroreflectance spectrum of Ge and GaAs," Phys. Rev. B, vol. 15, no. 4, pp. 2127-2144, Feb. 1977. DOI: 10.1103/PhysRevB.15.2127
- [18] E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Eowalczyk, "Precise determination of the valence-band edge in x-ray photoemission spectra:

Application to measurement of semiconductor interface potentials," Phys. Rev. Lett., vol. 44, no. 24, pp. 1620-1623, June 1980. DOI: 10.1103/PhysRevLett.44.1620

- H. Itokawa, T. Maruyama, S. Miyazaki, and M. Hirose, "Determination [19] of bandgap and energy band alignment for high-dielectric-constant gate insulators using high-resolution x-ray photoelectron spectroscopy," in Ext. Abstr. Conf. Solid State Devices Mater., Tokyo, Japan, 1999, pp. 158-159. DOI: 10.7567/SSDM.1999.B-4-1
- [20] M. K. Hudait, Y. Zhu, D. Maurya, S. Priya, P. K. Patra, A. W. K. Ma, A. Aphale, and I. Macwan, "Structural and band alignment properties of Al₂O₃ on epitaxial Ge grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy," J. Appl. Phys., vol. 113, no. 13, pp. 134311-1-134311-8, Apr. 2013. DOI: 10.1063/1.4799367
- [21] E. Bersch, M. Di, S. Consiglio, R. D. Clark, G. J. Leusink, and A. C. Diebold, "Complete band offset characterization of the HfO₂/SiO₂/Si stack using charge corrected x-ray photoelectron spectroscopy," J. Appl. Phys., vol. 107, no. 4, pp. 043702-1-043702-13, Feb. 2010. DOI: 10.1063/1.3284961
- [22] X. Wang, J. Xiang, W. Wang, C. Zhao, and J. Zhang, "Dependence of electrostatic potential distribution of Al2O3/Ge structure on Ge thickness," Surf. Sci., vol. 651, pp. 94–99, Apr. 2016. DOI: 10.1016/j.susc.2016.04.001
- [23] J.-S. Liu, M. B. Clavel, and M. K. Hudait, "Performance evaluation of novel strain-engineered Ge-InGaAs heterojunction tunnel field-effect transistors," IEEE Trans. Electron Devices, vol. 62, no. 10, pp. 3223-3228, Oct. 2015. DOI: 10.1109/TED.2015.2469536
- [24] G. Lucovsky, "Correlations between electronic structure of transition metal atoms and performance of high-k gate dielectrics in advanced Si devices," J. Non-Cryst. Solids, vol. 303, no. 1, pp. 40-49, Feb. 2002. DOI: 10.1016/S0022-3093(02)00962-6
- [25] V. V. Afanas'ev, M. Houssa, A. Stesmans, C. Merckling, T. Schram, and J. A. Kittl, "Influence of Al2O3 crystallization on band offsets at interfaces with Si and TiNx," Appl. Phys. Lett., vol. 99, no. 7, pp. 072103-1-072103-3, Aug. 2011. DOI: 10.1063/1.3623439