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We examine room-temperature magnetic relaxation in polycrystalline Fe films. Out-of-plane ferromagnetic
resonance measurements reveal Gilbert damping parameters of ≈0.0024 for Fe films with thicknesses of
4–25 nm, regardless of their microstructural properties. This observation runs counter to the intuition that
various film defects heavily influence Gilbert damping. The remarkable invariance with film microstructure
suggests that room-temperature intrinsic Gilbert damping in the Fe films is mostly fixed by the bcc crystal
structure within the bulk of nanoscale grains, with limited impact from grain boundaries and film roughness.
By contrast, the in-plane FMR linewidths of the Fe films exhibit distinct nonlinear frequency dependencies,
indicating the presence of strong extrinsic damping. To fit our in-plane FMR data, we have used a grain-to-grain
two-magnon scattering model with two types of correlation functions aimed at describing the spatial distribution
of inhomogeneities in the film. However, neither of the two correlation functions is able to reproduce the
experimental data quantitatively with physically reasonable parameters. Our findings advance the fundamental
understanding of intrinsic Gilbert damping in structurally disordered films, while demonstrating the need for a
deeper examination of how microstructural disorder governs extrinsic damping.
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I. INTRODUCTION

In all magnetic materials, magnetization has the tendency
to relax toward an effective magnetic field. How fast the
magnetization relaxes governs the performance of a variety
of magnetic devices. For example, magnetization relaxation
hinders efficient precessional dynamics and should be min-
imized in devices such as precessional magnetic random
access memories, spin-torque oscillators, and magnonic cir-
cuits [1–4]. From the technological perspective, it is important
to understand the mechanisms behind magnetic relaxation
in thin-film materials that comprise various nanomagnetic
devices. Among these materials, bcc Fe is a prototypical ele-
mental ferromagnet with attractive properties, including high
saturation magnetization, soft magnetism [5], and large tunnel
magnetoresistance [6,7]. Our present study is therefore moti-
vated by the need to uncover magnetic relaxation mechanisms
in Fe thin films, particularly polycrystalline films, that can be
easily grown on arbitrary substrates for diverse applications.

To gain insights into the contributions to magnetic re-
laxation, a common approach is to examine the frequency
dependence of the ferromagnetic resonance (FMR) linewidth.
The most often studied contribution is viscous Gilbert damp-
ing [8–13], which yields a linear increase in FMR linewidth
with increasing precessional frequency. In ferromagnetic met-
als, Gilbert damping arises predominately from “intrinsic”
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mechanisms [14–16] governed by the electronic band struc-
ture.1 Indeed, a recent experimental study by Khodadadi et al.
[17] has shown that intrinsic, band-structure-based Gilbert
damping dominates magnetic relaxation in high-quality crys-
talline thin films of Fe, epitaxially grown on lattice-matched
substrates. However, it is yet unclear how intrinsic damping is
impacted by the microstructure of polycrystalline Fe films.

Microstructural disorder in polycrystalline Fe films can
also introduce extrinsic magnetic relaxation. A well-known
extrinsic relaxation mechanism is two-magnon scattering,
where the uniform precession mode with zero wave vector
scatters into a degenerate magnon mode with a finite wave
vector [18–21]. Two-magnon scattering generally leads to
a nonlinear frequency dependence of the FMR linewidth,
governed by the nature of magnon scattering centers at the
surfaces [22,23] or in the bulk of the film [24–27]. While
some prior experiments point to the prominent roles of ex-
trinsic magnetic relaxation in polycrystalline ferromagnetic
films [28–30], systematic studies of extrinsic relaxation (e.g.,
two-magnon scattering) on polycrystalline Fe thin films are
still lacking.

1Eddy-current damping and radiative damping [36] can also con-
tribute to viscous damping, but they typically constitute a small
correction that is �10% of intrinsic Gilbert damping in �20-nm-
thick ferromagnetic thin films [17,35], which is thought to be rooted
in the electronic band structure of the ferromagnetic metal [14–16].
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Here, we investigate both the intrinsic and extrinsic con-
tributions to magnetic relaxation at room temperature in
polycrystalline Fe films. We have measured the frequency
dependence of the FMR linewidth with (1) the film magne-
tized out of plane (OOP), where two-magnon scattering is
suppressed [24] such that intrinsic Gilbert damping is quanti-
fied reliably, and (2) the film magnetized in plane (IP), where
two-magnon scattering is generally expected to coexist with
intrinsic Gilbert damping.

From OOP FMR results, we find that the intrinsic Gilbert
damping of polycrystalline Fe films at room temperature is
independent of their structural properties and almost identical
to that of epitaxial films. Such insensitivity to microstructure
is in contrast to disorder-sensitive Gilbert damping recently
shown in epitaxial Fe at cryogenic temperature [17]. This
finding implies that, in Fe thin films, Gilbert damping at
a sufficiently high temperature is primarily governed by
the structure within nanoscale crystal grains, rather than
grain boundaries or interfacial disorder. This implication
refutes the intuitive expectation that intrinsic Gilbert damp-
ing should depend on structural disorder in polycrystalline
films.

In IP FMR results, the frequency dependence of the FMR
linewidth exhibits strong nonlinear trends that vary signif-
icantly with film microstructure. To analyze the nonlinear
trends, we have employed the grain-to-grain two-magnon
scattering model developed by McMichael and Krivosik [24]
with two types of correlation functions for capturing inho-
mogeneities in the film. However, neither of the correlation
functions yields quantitative agreement with the experimental
results or physically consistent, reasonable parameters. This
finding implies that a physical, quantitative understanding
of extrinsic magnetic relaxation requires further corrections
of the existing two-magnon scattering model, along with
much more detailed characterization of the nanoscale inho-
mogeneities of the Fe film. Our study stimulates opportunities
for a deeper examination of fundamental magnetic relaxation
mechanisms in structurally disordered ferromagnetic metal
films.

II. FILM DEPOSITION AND STRUCTURAL PROPERTIES

Polycrystalline Fe thin films were deposited using DC
magnetron sputtering at room temperature on Si substrates
with a native oxide layer of SiO2. The base pressure
of the chamber was below 1 × 10−7 Torr and all films
were deposited with 3 mTorr Ar pressure. Two sample
series with different seed layers were prepared in our
study: subs./Ti(3 nm)/Cu(3 nm)/Fe(2-25 nm)/Ti(3 nm) and
subs./Ti(3 nm)/Ag(3 nm)/Fe(2-25 nm)/Ti(3 nm). In this pa-
per we refer to these two sample series as Cu/Fe and Ag/Fe,
respectively. The layer thicknesses are based on deposition
rates derived from x-ray reflectivity (XRR) of thick calibration
films. The Ti layer grown directly on the substrate ensures
good adhesion of the film, whereas the Cu and Ag layers yield
distinct microstructural properties for Fe as described below.
We note that Cu is often used as a seed layer for growing
textured polycrystalline ferromagnetic metal films [31,32].
Our initial motivation for selecting Ag as an alternative seed
layer was that it might promote qualitatively different Fe film

growth [33], owing to a better match in bulk lattice parameter
a between Fe (a ≈ 2.86 Å) and Ag (a/

√
2 ≈ 2.88 Å) com-

pared to Fe and Cu (a/
√

2 ≈ 2.55 Å).
We performed x-ray diffraction (XRD) measurements to

compare the structural properties of the Cu/Fe and Ag/Fe
films. Figures 1(a) and 1(b) show symmetric θ -2θ XRD scan
curves for several films from both the Cu/Fe and Ag/Fe sam-
ple series. For all Cu/Fe films, the (110) body-centered-cubic
(bcc) peak can be observed around 2θ = 44◦–45◦ [Fig. 1(a)].
This observation confirms that the Fe films grown on Cu are
polycrystalline and textured, where the crystal grains predom-
inantly possess (110)-oriented planes that are parallel to the
sample surface. For Ag/Fe [Fig. 1(b)], the (110) bcc peak is
absent or extremely weak, from which one might surmise that
the Fe films grown on Ag are amorphous or only possess weak
crystallographic texture. However, we find that the Ag/Fe
films are, in fact, also polycrystalline with evidence of (110)
texturing. In the following, we elaborate on our XRD results,
first for Cu/Fe and then Ag/Fe.

We observe evidence for a peculiar, nonmonotonic trend in
the microstructural properties of the Cu/Fe films. Specifically,
the height of the θ -2θ diffraction peak [Fig. 1(a)] increases
with Fe film thickness up to ≈10 nm but then decreases at
higher Fe film thicknesses. While we do not have a complete
explanation for this peculiar nonmonotonic trend with film
thickness, a closer inspection of the XRD results (Fig. 1)
provides useful insights. First, the Fe film diffraction peak
shifts toward a higher 2θ value with increasing film thickness.
This signifies that thinner Fe films on Cu are strained (with the
Fe crystal lattice tetragonally distorted), whereas thicker Fe
films undergo structural relaxation such that the out-of-plane
lattice parameter converges toward the bulk value of ≈2.86 Å,
as summarized in Fig. 1(e). Second, as the Fe film thickness
approaches ≈10 nm, additional diffraction peaks appear to the
left of the tall primary peak. We speculate that these additional
peaks may originate from Fe crystals that remain relatively
strained (i.e., with an out-of-plane lattice parameter larger
than the bulk value), while the primary peak arises from more
relaxed Fe crystals (i.e., with a lattice parameter closer to
the bulk value). The coexistence of such different Fe crystals
appears to be consistent with the rocking curve measurements
[Fig. 1(c)], which exhibit a large broad background peak in
addition to a small sharp peak for Cu/Fe films with thick-
nesses near ≈10 nm. As we describe in Sec. IV, these ≈10 nm
thick Cu/Fe samples also show distinct behaviors in extrin-
sic damping (highly nonlinear frequency dependence of the
FMR linewidth) and static magnetization reversal (enhanced
coercivity), which appear to be correlated with the peculiar
microstructural properties evidenced by our XRD results. On
the other hand, it is worth noting that the estimated crystal
grain size [Fig. 1(f)], derived from the width of the θ -2θ

diffraction peak, does not exhibit any anomaly near the film
thickness of ≈10 nm, but rather increases monotonically with
film thickness.

Unlike the Cu/Fe films discussed above, the Ag/Fe films
do not show a strong (110) bcc peak in the θ -2θ XRD results.
However, the lack of pronounced peaks in the symmetric
θ -2θ scans does not necessarily signify that Ag/Fe is amor-
phous. This is because symmetric θ -2θ XRD is sensitive to
crystal planes that are nearly parallel to the sample surface,
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FIG. 1. θ -2θ x-ray diffraction scan curves for the (a) Cu/Fe and (b) Ag/Fe sample series. The inset in (b) is a grazing-incidence XRD
scan curve for the 10-nm-thick Ag/Fe film. Rocking curves for the (c) Cu/Fe and (d) Ag/Fe sample series. (e) Out-of-plane lattice parameter
estimated via Bragg’s law using the 2θ value at the maximum of the tallest film diffraction peak. (f) Crystallite size estimated via the Scherrer
equation using the full width at half-maximum of the tallest film diffraction peak. In (e) and (f), the data for the Ag/Fe film series at a few
thickness values are missing because of the absence of the bcc (110) peak in θ -2θ XRD scans.

such that the diffraction peaks capture only the crystal planes
with out-of-plane orientation with a rather small range of
misalignment (within ∼1◦, dictated by incident x-ray beam
divergence). In fact, from asymmetric grazing-incidence XRD
scans that are sensitive to other planes, we are able to ob-
serve a clear bcc Fe (110) diffraction peak even for Ag/Fe
samples that lack an obvious diffraction peak in θ -2θ scans
[see, e.g., inset of Fig. 1(b)]. Furthermore, rocking curve
scans [conducted with 2θ fixed to the expected position of the
(110) Fe film diffraction peak] provide orientation informa-
tion over an angular range much wider than ∼1◦. As shown
in Fig. 1(d), a clear rocking curve peak is observed for each
Ag/Fe sample, suggesting that Fe films grown on Ag are poly-
crystalline and (110) textured, albeit with the (110) crystal
planes more misaligned from the sample surface compared
to the Cu/Fe samples. The out-of-plane lattice parameters of
Ag/Fe films (with discernible θ -2θ diffraction film peaks)
show the trend of relaxation towards the bulk value with
increasing Fe thickness [Fig. 1(e)], similar to the Cu/Fe series.
Yet, the lattice parameters for Ag/Fe at small thicknesses are
systematically closer to the bulk value, possibly because Fe is
less strained (i.e., better lattice matched) on Ag than on Cu.
We also find that the estimation of the crystal grain size for
Ag/Fe, although made difficult by the smallness of the diffrac-
tion peak, yields a trend comparable to Cu/Fe, as shown in
Fig. 1(f).

We also observe a notable difference between Cu/Fe and
Ag/Fe in the properties of film interfaces, as revealed by XRR

scans in Fig. 2. The oscillation period depends inversely on the
film thickness. The faster decay of the oscillatory reflectivity
signal at high angles for Ag/Fe suggests that the Ag/Fe films
may have rougher interfaces compared to the Cu/Fe films.
Another interpretation of the XRR results is that the Ag/Fe
interface is more diffuse than the Cu/Fe interface, i.e., due to
interfacial intermixing of Ag and Fe. By fitting the XRR re-
sults [34], we estimate an average roughness (or the thickness
of the diffuse interfacial layer) of �1 nm for the Fe layer in
Cu/Fe, while it is much greater at ≈2–3 nm for Ag/Fe.2

Our structural characterization described above thus re-
veals key attributes of the Cu/Fe and Ag/Fe sample series.
Both film series are polycrystalline, exhibit (110) texture, and
have grain sizes of order film thickness. Nevertheless, there
are also crucial differences between Cu/Fe and Ag/Fe. The
Cu/Fe series overall exhibits stronger θ -2θ diffraction peaks
than the Ag/Fe series, suggesting that the (110) bcc crystal
planes of Fe grown on Cu are aligned within a tighter angular
range than those grown on Ag. Moreover, Fe grown on Cu has
relatively smooth or sharp interfaces compared to Fe grown
on Ag. Although identifying the origin of such structural dif-
ferences is beyond the scope of this work, Cu/Fe and Ag/Fe
constitute two qualitatively distinct series of polycrystalline

2Here, the “average roughness” is the average of the roughness of
the top and bottom interfaces of the Fe layer.
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FIG. 2. X-ray reflectivity scans of (a) 10- and (b) 25-nm-thick Fe
films from the Cu/Fe (blue circles) and Ag/Fe (red squares) sample
series. Black solid curves are fits to the data.

Fe films for exploring the influence of microstructure on mag-
netic relaxation.

III. INTRINSIC GILBERT DAMPING PROBED BY
OUT-OF-PLANE FMR

Having established the difference in structural proper-
ties between Cu/Fe and Ag/Fe, we characterize room-
temperature intrinsic damping for these samples with OOP
FMR measurements. The OOP geometry suppresses two-
magnon scattering [24] such that the Gilbert damping
parameter can be quantified in a straightforward manner. We
use a W-band shorted waveguide in a superconducting mag-
net, which permits FMR measurements at high fields (�4 T)
that completely magnetize the Fe films out of plane. The
details of the measurement method are found in Refs. [17,35].
Figure 3(a) shows the frequency dependence of half-width
at half-maximum (HWHM) linewidth �HOOP for selected
thicknesses from both sample series. The linewidth data of
25-nm-thick epitaxial Fe film from a previous study [17] is
plotted in Fig. 3(a) as well. The intrinsic damping parameter
can be extracted from the linewidth plot using

�HOOP = �H0 + 2π

γ
αOOP f , (1)
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FIG. 3. (a) OOP FMR half-width-at-half-maximum linewidth
�HOOP as a function of resonance frequency f . Lines correspond
to fits to the data. (b) Gilbert damping parameter αOOP extracted
from OOP FMR as a function of Fe film thickness. The red shaded
area highlights the damping value range that contains data points
of all films thicker than 4 nm. The data for the epitaxial Fe sample
(25-nm-thick Fe grown on MgAl2O4) are adapted from Ref. [17].

where �H0 is the inhomogeneous broadening,3 γ = gμB

h̄ is the
gyromagnetic ratio (γ /2π ≈ 2.9 MHz/Oe,4 obtained from
the frequency dependence of the resonance field [35]), and
αOOP is the measured viscous damping parameter. In gen-
eral, αOOP can include not only intrinsic Gilbert damping,
parametrized by αint, but also eddy-current, radiative damp-
ing, and spin-pumping contributions [36], which all yield a
linear frequency dependence of the linewidth. Damping due
to eddy current is estimated to make up less than 10% of the
total measured damping parameter [35] and is ignored here.
Since we used a shorted waveguide in our setup, the radiative
damping does not apply here. Spin pumping is also negligible
for most of the samples here because the materials in the
seed and capping layers (i.e., Ti, Cu, and Ag) possess weak

3The magnitude of the inhomogeneous broadening �H0 seen in OP
FMR ranges from ≈10 to 50 Oe with no clear systematic dependence
on Fe film thickness or seed layer material.

4γ /2π ≈ 2.9 MHz/Oe corresponds to a spectroscopic g factor of
g ≈ 2.08, in line with Ref. [32].
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spin-orbit coupling and are hence poor spin sinks [30,37,38].
We therefore proceed by assuming that the measured OOP
damping parameter αOOP is equivalent to the intrinsic Gilbert
damping parameter.

The extracted damping parameter is plotted as a function of
Fe film thickness in Fig. 3(b). The room-temperature damping
parameters of all Fe films with thicknesses of 4–25 nm fall
in the range of 0.0024 ± 0.0004, which is shaded in red in
Fig. 3(b). This damping parameter range is quantitatively in
line with the value reported for epitaxial Fe [black symbol in
Fig. 3(b)] [17]. For 2-nm-thick samples, the damping parame-
ter is larger likely due to an additional interfacial contribution
[39–41], e.g., spin relaxation through interfacial Rashba spin-
orbit coupling [42] that becomes evident only for ultrathin Fe.
The results in Fig. 3(b) therefore indicate that the structural
properties of the � 4-nm-thick polycrystalline bcc Fe films
have little influence on their intrinsic damping.

It is remarkable that these polycrystalline Cu/Fe and
Ag/Fe films, with different thicknesses and microstructural
properties (as revealed in Sec. II), exhibit essentially the
same room-temperature intrinsic Gilbert damping parameter
as single-crystalline bcc Fe. This finding is qualitatively dis-
tinct from a prior report [17] on intrinsic Gilbert damping in
single-crystalline Fe films at cryogenic temperature, which
is sensitive to microstructural disorder. In the following, we
discuss the possible differences in the mechanisms of intrinsic
damping between these temperature regimes.

Intrinsic Gilbert damping in ferromagnetic metals is
predominantly governed by transitions of spin-polarized elec-
trons between electronic states, within a given electronic band
(intraband scattering) or in different electronic bands (inter-
band scattering) near the Fermi level [15]. For Fe, previous
studies [15,17,43] indicate that intraband scattering tends to
dominate at low temperature where the electronic scattering
rate is low (e.g., ∼1013 s−1); by contrast, interband scattering
likely dominates at room temperature where the electronic
scattering rate is higher (e.g., ∼1014 s−1). According to our
results [Fig. 3(b)], intrinsic damping at room temperature is
evidently unaffected by the variation in the structural proper-
ties of the Fe films. Hence, the observed intrinsic damping
is mostly governed by the electronic band structure within
the Fe grains, such that disorder in grain boundaries or film
interfaces has minimal impact.

The question remains as to why interband scattering at
room temperature leads to Gilbert damping that is insensitive
to microstructural disorder, in contrast to intraband scattering
at low temperature yielding damping that is quite sensitive
to microstructure [17]. This distinction may be governed by
what predominantly drives electronic scattering – specifically,
defects (e.g., grain boundaries, rough or diffuse interfaces) at
low temperature, as opposed to phonons at high temperature.
That is, the dominance of phonon-driven scattering at room
temperature may effectively diminish the roles of microstruc-
tural defects in Gilbert damping. Future experimental studies
of temperature-dependent damping in polycrystalline Fe films
may provide deeper insights. Regardless of the underlying
mechanisms, the robust consistency of αOOP [Fig. 3(b)] could
be an indication that the intrinsic Gilbert damping parameter
at a sufficiently high temperature is a nanoscale property of
the Fe thin film, possibly averaged over the ferromagnetic

exchange length of just a few nm (Ref. [44]) that is com-
parable or smaller than the grain size. In this scenario, the
impact on damping from grain boundaries would be limited in
comparison to the contributions to damping within the grains.

Moreover, the misalignment of Fe grains evidently does not
have much influence on the intrinsic damping. This is reason-
able considering that intrinsic Gilbert damping is predicted to
be nearly isotropic in Fe at sufficiently high electronic scat-
tering rates [45], e.g., ∼1014 s−1 at room temperature where
interband scattering is expected to be dominant [15,17,43].
It is also worth emphasizing that αOOP remains unchanged
for Fe films of various thicknesses with different magnitudes
of strain [tetragonal distortion, as evidenced by the variation
in the out-of-plane lattice parameter in Fig. 1(e)]. Strain in
Fe grains is not expected to impact the intrinsic damping, as
Ref. [17] suggests that strain in bcc Fe does not significantly
alter the band structure near the Fermi level. Thus, polycrys-
talline Fe films exhibit essentially the same magnitude of
room-temperature intrinsic Gilbert damping as epitaxial Fe,
as long as the grains retain the bcc crystal structure.

The observed invariance of intrinsic damping here is quite
different from the recent study of polycrystalline Co25Fe75

alloy films [30], reporting a decrease in intrinsic damping with
increasing structural disorder. This inverse correlation be-
tween intrinsic damping and disorder in Ref. [30] is attributed
to the dominance of intraband scattering, which is inversely
proportional to the electronic scattering rate. It remains an
open challenge to understand why the room-temperature in-
trinsic Gilbert damping of some ferromagnetic metals might
be more sensitive to structural disorder than others. Different
electronic band structures of diverse ferromagnetic metals
could strongly influence whether defects or phonons dominate
electronic scattering, which underpins Gilbert damping, at a
given temperature. Further experiments on additional ferro-
magnetic metals beyond elemental Fe could reveal a more
general relationship between microstructural properties and
intrinsic Gilbert damping.

IV. EXTRINSIC MAGNETIC RELAXATION PROBED
BY IN-PLANE FMR

Although we have shown via OOP FMR in Sec. III that
intrinsic Gilbert damping is essentially independent of the
structural properties of the Fe films, it might be expected that
microstructure has a pronounced impact on extrinsic mag-
netic relaxation driven by two-magnon scattering, which is
generally present in IP FMR. IP-magnetized films are more
common in device applications than OOP-magnetized films
since the shape anisotropy of thin films tends to keep the mag-
netization in the film plane. What governs the performance
of such magnetic devices (e.g., quality factor [46,47]) may
not be the intrinsic Gilbert damping parameter but the total
FMR linewidth. Thus, for many magnetic device applications,
it is essential to understand the contributions to the IP FMR
linewidth.

IP FMR measurements have been performed using
a coplanar-waveguide-based spectrometer, as detailed in
Refs. [17,35]. Examples of the frequency dependence of IP
FMR linewidth are shown in Fig. 4. In contrast to the lin-
ear frequency dependence that arises from intrinsic Gilbert
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a function of resonance frequency f for (a) Cu/Fe and (b) Ag/Fe.
The vertical dashed line at 12 GHz highlights the hump in linewidth
vs frequency seen for many of the samples.

damping in Fig. 3(a), a nonlinear hump is observed for most
of the films in the vicinity of ≈12 GHz. In some films, e.g.,
10-nm-thick Cu/Fe film, the hump is so large that its peak
even exceeds the linewidth at the highest measured frequency.
Similar nonlinear IP FMR linewidth behavior has been ob-
served in Fe alloy films [48] and epitaxial Heusler films [49]
in previous studies, where two-magnon scattering has been
identified as a significant contributor to the FMR linewidth.
Therefore, in the following, we attribute the nonlinear behav-
ior to two-magnon scattering.

To gain insight into the origin of two-magnon scatter-
ing, we plot the linewidth at 12 GHz, approximately where
the hump is seen in Fig. 4, against the Fe film thickness
in Fig. 5(a). We do not observe a monotonic decay in the
linewidth with increasing thickness that would result from
two-magnon scattering of interfacial origin [50]. Rather, we
observe a nonmonotonic thickness dependence in Fig. 5(a),
which indicates that the observed two-magnon scattering orig-
inates within the bulk of the films. We note that Ag/Fe
with greater interfacial disorder (see Sec. II) exhibits weaker
two-magnon scattering than Cu/Fe, particularly in the lower
thickness regime (�10 nm). This observation further corrob-
orates that the two-magnon scattering here is not governed by
the interfacial roughness of Fe films. The contrast between
Cu/Fe and Ag/Fe also might appear counterintuitive since
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vs frequency is seen (see Fig. 4), as a function of Fe film thickness
for both Cu/Fe and Ag/Fe. (b) Coercivity Hc as a function of film
thickness for both Cu/Fe and Fe Ag/Fe. The red shaded area high-
lights thickness region where the Cu/Fe sample series show a peak
behavior in both plots.

two-magnon scattering is induced by defects and hence might
be expected to be stronger for more “defective” films (i.e.,
Ag/Fe in this case). The counterintuitive nature of the two-
magnon scattering here points to more subtle mechanisms at
work.

To search for a possible correlation between static
magnetic properties and two-magnon scattering, we have
performed vibrating sample magnetometry (VSM) measure-
ments with a Microsense EZ9 VSM. Coercivity extracted
from VSM measurements is plotted as a function of film
thickness in Fig. 5(b), which shows a remarkably close
correspondence with linewidth vs thickness [Fig. 5(a)]. In par-
ticular, a pronounced peak in coercivity is observed for Cu/Fe
around 10 nm, corresponding to the same thickness regime
where the 12-GHz FMR linewidth for Cu/Fe is maximized.
Moreover, the 10-nm Cu/Fe sample (see Sec. II) exhibits a
tall, narrow bcc (110) diffraction peak, which suggests that its
peculiar microstructure plays a possible role in the large two-
magnon scattering and coercivity (e.g., via stronger domain
wall pinning).
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TABLE I. Summary of IP FMR linewidth fit results. Note the divergence to physically unreasonable values in many of the results. Standard
error is calculated using equation

√
SSR/DOF × diag(COV), where SSR stands for the sum of squared residuals, DOF stands for degrees of

freedom, and COV stands for the covariance matrix.

Self-affine Mounded

Sampleseries Thickness (nm) ξ (nm) Ha (Oe) ξ (nm) Ha (Oe) λ (nm)

Cu/Fe 6 70 ± 10 170 ± 10 80 ± 90 24 ± 3 >1 × 104

8 200 ± 100 150 ± 20 700 ± 1000 25 ± 2 900 ± 100
10 140 ± 40 200 ± 20 160 ± 50 33 ± 1 800 ± 200
15 9 ± 2 800 ± 100 10 ± 20 100 ± 80 >1 × 104

25 0 ± 5 >1 × 104 60 ± 30 >1 × 104 10.41 ± 0.01
Ag/Fe 6 0 ± 40 >1 × 104 150 ± 40 >1 × 104 11.7 ± 0.7

8 0 ± 30 >1 × 104 170 ± 50 >1 × 104 12 ± 4
10 6 ± 1 1500 ± 300 8 ± 40 200 ± 500 >1 × 104

15 2 ± 2 4000 ± 3000 3 ± 9 500 ± 900 >6 × 103

25 0 ± 6 >1 × 104 140 ± 50 >1 × 104 15 ± 6

While the trends shown in Fig. 5 provide some qualita-
tive insights, we now attempt to quantitatively analyze the
frequency dependence of FMR linewidth for the Cu/Fe and
Ag/Fe films. We assume that the Gilbert damping parameter
for IP FMR is equal to that for OOP FMR, i.e., αIP = αOOP.
This assumption is physically reasonable, considering that
Gilbert damping is theoretically expected to be isotropic in
Fe films near room temperature [45]. While a recent study has
reported anisotropic Gilbert damping that scales quadratically
with magnetostriction [51], this effect is likely negligible in
elemental Fe whose magnetostriction is several times smaller
[52,53] than that of the Fe0.7Ga0.3 alloy in Ref. [51].

Thus, from the measured IP linewidth �HIP, the extrinsic
two-magnon scattering linewidth �HTMS can be obtained by

�HTMS = �HIP − 2π

γ
αIP, (2)

where 2π
γ

αIP is the Gilbert damping contribution. Figure 6
shows the obtained �HTMS and fit attempts using the
“grain-to-grain” two-magnon scattering model developed by
McMicheal and Krivosik [24]. This model captures the inho-
mogeneity of the effective internal magnetic field in a film
consisting of many magnetic grains. The magnetic inhomo-
geneity can arise from the distribution of magnetocrystalline
anisotropy field directions associated with the randomly ori-
ented crystal grains [48]. In this model the two-magnon
scattering linewidth �HTMS is a function of the Gilbert
damping parameter αIP, the effective anisotropy field Ha of
the randomly oriented grain, and the correlation length ξ

within which the effective internal magnetic field is correlated.
Further details for computing �HTMS are provided in the Ap-
pendix and Refs. [24,48,49]. As we have specified above, αIP

is set to the value derived from OOP FMR results [i.e., αOOP

in Fig. 3(b)]. This leaves ξ and Ha as the only free parameters
in the fitting process.

The modeling results are dependent on the choice of the
correlation function C(R), which captures how the effective
internal magnetic field is correlated as a function of lateral
distance R in the film plane. We first show results obtained
with a simple exponentially decaying correlation function, as
done in prior studies of two-magnon scattering [24,48,49],

i.e.,

C(R) = exp

(
−|R|

ξ

)
. (3)

Equation (3) has the same form as the simplest correlation
function used to model rough topographical surfaces (when
they are assumed to be “self-affine”) [54]. Fit results with
Eq. (3) are shown in dashed blue curves in Fig. 6. For most
samples, the fitted curve does not reproduce the experimental
data quantitatively. Moreover, the fitted values of ξ and Ha

often reach physically unrealistic values, e.g., Ha > 104 Oe
and ξ < 1 nm (see Table I). These results suggest that the
model does not properly capture the underlying physics of
two-magnon scattering in our samples.

A possible cause for the failure to fit the data is that
the simple correlation function [Eq. (3)] is inadequate. We
therefore consider an alternative correlation function by again
invoking an analogy between the spatially varying height of a
rough surface [54] and the spatially varying effective internal
magnetic field in a film. Specifically, we apply a correlation
function [i.e., a special case of Eq. (4.3) in Ref. [54] where
short-range roughness α = 1] for the so-called “mounded
surface,” which incorporates the average distance λ between
peaks in topographical height (or, analogously, effective inter-
nal magnetic field):

C(R) =
√

2|R|
ξ

K1

(√
2|R|
ξ

)
J0

(
2π |R|

λ

)
, (4)

where J0 and K1 are the Bessel function of the first kind of
order zero and the modified Bessel function of the second kind
of order one, respectively. This oscillatory decaying function
is chosen because its Fourier transform (see Appendix) does
not contain any transcendental functions, which simplifies
the numerical calculations. We also stress that while Eq. (4)
in the original context (Ref. [54]) was used to model topo-
graphical roughness, we are applying Eq. (4) in an attempt to
model the spatial fluctuations (“roughness”) of the effective
internal magnetic field rather than the roughness of the film
topography.

The fitted curves using the model with Eq. (4) are shown in
solid red curves in Fig. 6. Fit results for some samples show
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FIG. 6. Extrinsic two-magnon scattering linewidth �HTMS vs
frequency f and fitted curves for 6, 8, 10, 15, and 25 nm Cu/Fe and
Ag/Fe films. Black squares represent experimental FMR linewidth
data. Dashed blue and solid red curves represent the fitted curves
using correlation functions proposed for modeling self-affine and
mounded surfaces, respectively. In (d), (e), (h), and (i), dashed blue
curves overlap with solid red curves.

visible improvement, although this is perhaps not surprising
with the introduction of λ as an additional free parameter.
Nevertheless, the fitted values of Ha or λ still diverge to
unrealistic values of >104 Oe or >104 nm in some cases
(see Table I), which means that the new correlation function
[Eq. (4)] does not fully reflect the meaningful underlying
physics of our samples either. More detailed characterization
of the microstructure and inhomogeneities, e.g., via syn-
chrotron x-ray and neutron scattering, could help determine
the appropriate correlation function. It is also worth pointing
out that for some samples (e.g., 15-nm Cu/Fe and Ag/Fe
films), essentially identical fit curves are obtained regardless
of the correlation function. This is because when λ � ξ , the
Fourier transform of Eq. (4) has a very similar form as the
Fourier transform of Eq. (3), as shown in the Appendix. In
such cases, the choice of the correlation function has almost

no influence on the behavior of the two-magnon scattering
model in the fitting process.

V. SUMMARY

We have examined room-temperature intrinsic and extrin-
sic damping in two series of polycrystalline Fe thin films
with distinct structural properties. Out-of-plane FMR mea-
surements confirm constant intrinsic Gilbert damping of ≈
0.0024, essentially independent of film thickness and struc-
tural properties. We deduce that intrinsic damping in Fe at
room temperature is predominantly governed by the crys-
talline and electronic band structures within the grains, rather
than scattering at grain boundaries or film surfaces. This
presents a distinct counterexample to the intuition that scat-
tering by defects should impact Gilbert damping.

The results from in-plane FMR, where extrinsic damp-
ing (i.e., two-magnon scattering) plays a significant role,
are far more nuanced. The conventional grain-to-grain two-
magnon scattering model fails to reproduce the in-plane FMR
linewidth data with physically reasonable parameters, point-
ing to the need to modify the model, along with more detailed
characterization of the film microstructure. Our experimental
findings advance the understanding of intrinsic Gilbert damp-
ing in polycrystalline Fe, while motivating further studies to
uncover the mechanisms of extrinsic damping in structurally
disordered thin films.
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APPENDIX: DETAILS OF THE TWO-MAGNON
SCATTERING MODEL

In the model developed by McMichael and Krivosik,
the two-magnon scattering contribution �HTMS to the FMR
linewidth is given by [24,48,49]

�HTMS = γ 2H2
a

2πPA(ω)

∫

0kCk (ξ )δα (ω − ωk )d2k, (A1)

where ξ is correlation length, Ha is the effective anisotropy
field of the randomly oriented grain. PA(ω) = ∂ω

∂H |H=HFMR
=√

1 + ( 4πMs
2ω/γ

)2 accounts for the conversion between the

frequency and field swept linewidth. 
0k represents the av-
eraging of the anisotropy axis fluctuations over the sample. It
also takes into account the ellipticity of the precession for both
the uniform FMR mode and the spin-wave mode [48]. The
detailed expression of 
0k can be found in the Appendix of
Ref. [48]. The coefficients in the expression of 
0k depend on
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100 nm for all curves.

the type of anisotropy of the system. Here, we used first-order
cubic anisotropy for bcc Fe. δα (ω − ωk ) selects all the degen-
erate modes, where ω represents the FMR mode frequency
and ωk represents the spin-wave mode frequency. The detailed
expression of ωk can be found in Ref. [24]. In the ideal case
where Gilbert damping is 0, δα is the Dirac delta function.
For a finite damping, δα (ω0 − ωk ) is replaced by a Lorentzian
function 1

π

(αIPωk/γ )∂ω/∂H
(ωk−ω)2+[(αIPωk/γ )∂ω/∂H ]2 , which is centered at ω and

has the width of (2αIPωk/γ )∂ω/∂H .
Finally, Ck (ξ ) [or Ck (ξ, λ)] is the Fourier transform of

the grain-to-grain internal field correlation function, Eq. (3)
[or Eq. (4)]. For the description of magnetic inhomogeneity
analogous to the simple self-affine topographical surface [54],
the Fourier transform of the correlation function, Eq. (3), is

Ck (ξ ) = 2πξ 2

[1 + (kξ )2]
3
2

, (A2)

as also used in Refs. [24,48,49]. For the description analogous
to the mounded surface, the Fourier transform of the correla-
tion function, Eq. (4), is [54]

Ck (ξ, λ) = 8π3ξ 2
(
1 + 2π2ξ 2

λ2 + ξ 2

2 k2
)

[(
1 + 2π2ξ 2

λ2 + ξ 2

2 k2
)2 − ( 2πξ 2

λ
k
)2]3/2 . (A3)

When λ � ξ , Eq. (A3) becomes

Ck (ξ ) ≈ 8π3ξ 2

(
1 + ξ 2

2 k2
)2 , (A4)

which has a similar form as Eq. (A2). This similarity can also
be demonstrated graphically. Figure 7 plots a self-affine Ck

curve [Eq. (A2)] at ξ = 100 nm and three mounded Ck curves
[Eq. (A3)] at λ = 10, 100, and 1000 nm. ξ in mounded Ck

curves is set as 100 nm as well. It is clearly shown in Fig. 7
that when λ = 1000 nm, the peak appearing in λ = 10 and
100 nm mounded Ck curves disappears and the curve shape of
mounded Ck resembles that of self-affine Ck .

The hump feature in Fig. 4 is governed by both δα and Ck

[see Eq. (A1)]. δα has the shape of ∞ in reciprocal space (k
space), as shown in our videos in the Supplemental Material
[55] as well as Fig. 5(b) of Ref. [49] and Fig. 2(b) of Ref. [24].
The size of the contour of the degenerated spin-wave modes
in k space increases as the microwave frequency f increases,
which means the number of available degenerate spin-wave
modes increases as f increases. As shown in Fig. 7, self-affine
Ck is nearly constant with the wave number k until k reaches
∼1/ξ . This suggests that the system becomes effectively more
uniform (i.e., weaker inhomogeneous perturbation) when the
length scale falls below the characteristic correlation length
ξ (i.e., k > 1/ξ ). Because inhomogeneities serve as the scat-
tering centers of two-magnon scattering process, degenerate
spin-wave modes with k > 1/ξ are less likely to be scattered
into.

Now we consider the f dependence of the two-magnon
scattering rate. When f is small, the two-magnon scatter-
ing rate increases as f increases because more degenerate
spin-wave modes become available as f increases. When f
further increases, the wave number k of some degenerate
spin-wave modes exceeds 1/ξ . This will decrease the overall
two-magnon scattering rate because the degenerate spin-wave
modes with k > 1/ξ are less likely to be scattered into,
as discussed above. Furthermore, the portion of degenerate
spin-wave modes with k > 1/ξ increases as f continues to in-
crease. When the impact of decreasing two-magnon scattering
rate for degenerate spin-wave modes with high k surpasses the
impact of increasing available degenerate spin-wave modes,
the overall two-magnon scattering rate will start to decrease as
f increases. Consequently, the nonlinear trend, i.e., a “hump,”
in FMR linewidth �HTMS vs f appears in Fig. 4.

However, the scenario discussed above can only happen
when ξ is large enough because the wave number k of de-
generate spin-wave modes saturates (i.e., reaches a limit) as f
approaches infinity. If the limit value of k is smaller than 1/ξ ,
the two-magnon scattering rate will increase monotonically as
f increases. In that case the hump feature will not appear. See
our videos in the Supplemental Material [55] that display the
f dependence of 
0k , δα (ω − ωk ), Ck (ξ )

2πξ 2 , 
0kCk (ξ )δα (ω−ωk )
2πξ 2 , and

�HTMS for various ξ values.
Previous discussions of the hump feature are all based

on the self-affine correlation function [Eq. (3)]. The main
difference between the mounded correlation function [Eq. (4)]
and the self-affine correlation function [Eq. (3)] is that the
mounded correlation function has a peak when λ is not much
larger than ξ as shown in Fig. 7. This means when the wave
number k of degenerate spin-wave modes enters (leaves) the
peak region, two-magnon scattering rate will increase (de-
crease) much faster compared to the self-affine correlation
function. In other words, the mounded correlation function
can generate a narrower hump compared to the self-affine
correlation function in the two-magnon linewidth �HTMS vs
f plot, which is shown in Figs. 6(b) and 6(c).
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