# X-ray photoelectron spectroscopy analysis and band offset determination of $CeO_2$ deposited on epitaxial (100), (110), and (111)Ge

Yan Zhu, Nikhil Jain, and Mantu K. Hudait<sup>a)</sup> Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061

Deepam Maurya, Ronnie Varghese, and Shashank Priya Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061

(Received 8 October 2013; accepted 26 December 2013; published 17 January 2014)

The oxidation states, interface, and band alignment properties of physical vapor deposited CeO<sub>2</sub> films on epitaxial (100), (110), and (111)Ge were investigated by x-ray photoelectron spectroscopy (XPS). The cross-sectional transmission electron microscopy demonstrated the polycrystalline nature of the CeO<sub>2</sub> film. XPS analysis showed multiple Ce3d and Ce4d oxidation states with a mixture of Ce<sup>3+</sup> and Ce<sup>4+</sup> components existing in CeO<sub>2</sub>. Angular resolved XPS investigations indicate that the CeO<sub>2</sub> films mostly consist of Ce<sup>4+</sup> oxidation states while the Ce<sup>3+</sup> oxidation states are preferentially present near the surface. The CeO<sub>2</sub>/(100)Ge, CeO<sub>2</sub>/(110)Ge, and CeO<sub>2</sub>/(111)Ge structures showed almost identical valence band offset (VBO) values of 1.6, 1.5, and 1.6 eV, respectively, using XPS measurements from Ce3d core level (CL) peaks. These (VBO) values were also supported by XPS measurements from shallow Ce4d CL binding energy peaks. The conduction band offset values between CeO<sub>2</sub>/Ge were ~1.3 eV using the measured optical bandgap of CeO<sub>2</sub>. The XPS spectral analysis of cerium oxidation states and the measured band offset parameters for carrier confinement would offer an important path for the future design of Ge-based metal-oxide semiconductor devices. © 2014 American Vacuum Society. [http://dx.doi.org/10.1116/1.4862160]

### I. INTRODUCTION

Aggressive scaling of gate length and gate oxide thickness in Si complementary metal-oxide-semiconductor (CMOS) transistors have aggravated the problems of higher power consumption and higher gate leakage current.<sup>1-3</sup> In parallel, results on high mobility channel materials together with high- $\kappa$  gate dielectric have shown a potential pathway toward replacing the traditional Si based CMOS technology in nanoscale transistors for higher performance and low standby power logic applications.<sup>4–10</sup> Recently, Ge has attracted significant attention due to its high intrinsic electron and hole motilities.<sup>11–13</sup> Among various high- $\kappa$  gate dielectrics, cerium oxide  $(CeO_2)$  is an attractive candidate as a gate dielectric material on Ge as it provides high dielectric constant in the range of 23-52, 7,8,10,13 high refractive index (2.2–2.8),<sup>14</sup> high dielectric strength ( $\sim 25$  MV/cm),<sup>8,14</sup> moderate bandgap (3.0-3.6 eV),<sup>7,8,13</sup> and high thermal and chemical stability.<sup>7,14</sup> In fact, the most important consideration for utilizing CeO<sub>2</sub> as gate dielectric on Ge is the valence band and conduction band offset values, which should be larger than 1 eV to block the carrier injection from the semiconductor to the insulator.<sup>9,15</sup> In respect of these considerations, the integration of  $CeO_2$  on high mobility Ge as well as understanding of the interfacial properties are vital for advancing the further development of alternate CMOS. Besides, the research on CeO<sub>2</sub>/Ge structure will provide understanding of the interfacial chemical properties that play deterministic role in controlling the gate leakage current in a transistor. Although extensive studies have been conducted on the x-ray photoelectron spectroscopy (XPS) analysis of both CeO<sub>2</sub> and Ge,<sup>4-6,16-19</sup> no band offset values between CeO<sub>2</sub> and Ge have been reported due to the complexity of cerium (Ce) binding energy peaks, which presents challenge for analyzing both structural and electrical properties of CeO<sub>2</sub> on Ge. It has been demonstrated that the carrier mobility of Ge can be enhanced by utilizing Ge channel with different crystalline orientations:<sup>4</sup> hole mobility is high in (110)Ge<sup>20</sup> and electron mobility is high in (111)Ge.<sup>21</sup> The lack of band offset parameters and influence of Ge orientation necessitate the systematic XPS analysis and detailed band offset studies of CeO<sub>2</sub> grown on crystallographically oriented (100)Ge, (110)Ge, and (111)Ge layers.

CrossMark

In this study, detailed XPS analysis was conducted to determine the band offset of CeO<sub>2</sub> on (100), (110), and (111)Ge. The experimental results revealed that the valence band offset (VBO) between CeO<sub>2</sub> and Ge is almost identical for all three Ge orientations and the VBO value was  $\sim 1.6 \text{ eV}$ . The extracted conduction band offset (CBO) was  $\sim 1.3 \text{ eV}$  using the measured optical band gap of CeO<sub>2</sub> by spectroscopic ellipsometry. These experimentally measured band alignment parameters between the CeO<sub>2</sub> and the crystallographically oriented Ge provide important design parameters toward future CeO<sub>2</sub>/Ge based MOS devices.

### **II. EXPERIMENT**

Unintentionally doped (UID) Ge layers were grown by solid source molecular beam epitaxy (MBE) on (100)/6°, (110), and (111)A epi-ready GaAs substrates. The Ge MBE growth chamber is separated from the III-V growth chamber to reduce the intermixing between Ge and III-V materials. These two growth chambers are connected by ultrahigh vacuum transfer chamber. The detailed information on Ge growth process and the structural properties of Ge/GaAs heterostructure with different orientation can be found elsewhere.<sup>11,12</sup>

a)Electronic mail: mantu.hudait@vt.edu

CeO<sub>2</sub> thin films with thicknesses of ~20 and ~1.5 nm were deposited at room temperature using electron-beam physical vapor deposition (PVD) technique. The thicknesses were monitored using the quartz crystal monitor. A chamber base pressure of ~10<sup>-6</sup> Torr was realized prior to the deposition of CeO<sub>2</sub> film. The ultrahigh pure oxygen gas was introduced at a flow rate of ~5 sccm as the process gas with a delay of about 30 s after starting the CeO<sub>2</sub> deposition in order to substitute the loss of oxygen which could have resulted from source heating by the electron-beam. Cross-sectional transmission electron microscopy (TEM) was used to characterize the interface between CeO<sub>2</sub> and crystallographically oriented Ge epilayers. TEM samples were prepared using conventional mechanical thinning procedure followed by Ar<sup>+</sup> ion milling.

The chemical bonding properties of CeO<sub>2</sub> thin films and the band alignment of  $CeO_2$  on (100), (110), and (111)Ge were investigated using the PHI Quantera SXM XPS system with a monochromated Al-K $\alpha$  (energy of 1486.7 eV) x-ray source. To better understand the bonding characteristics of the CeO<sub>2</sub> thin films, angular resolved XPS measurements were performed with different exit angles of  $25^{\circ}$ ,  $45^{\circ}$  and  $75^{\circ}$ , respectively. The VBO values between CeO<sub>2</sub> and Ge with different Ge orientation were determined by measuring the binding energy from core levels (CLs) of Ce3d/Ge3d and valence band maxima (VBM) of CeO<sub>2</sub> and Ge, respectively. Shallow CL binding energy spectra from Ce4d were also collected to confirm the VBO values obtained from Ce3d peaks. The schematic diagram of the structures used in this study is shown in Fig. 1. As shown in Fig. 1, XPS spectra were collected from three samples of each Ge orientation: (1) 1.5 nm CeO<sub>2</sub>/80 nm Ge was used to measure the CL binding energy of Ce and Ge at the interface; (2) 20 nm  $CeO_2/80$  nm Ge was used to measure the CL binding energy of Ce and VBM of CeO<sub>2</sub>; (3) 80 nm Ge without the top CeO<sub>2</sub> layer was used to measure the CL binding energy of Ge and VBM of Ge. Native oxide on Ge surface was removed by wet chemical etching using deionized water for 5 s before loading into the XPS chamber. Sample charging was occurred during XPS measurement and was a particular problem on the fully oxidized materials.<sup>22–24</sup> Compensation



FIG. 1. (Color online) Schematic diagram of the CeO<sub>2</sub>/Ge structures. 1.5 nm CeO<sub>2</sub>/80 nm Ge was used to measure the CL binding energy of Ce and Ge at the interface, while 20 nm CeO<sub>2</sub>/80 nm Ge and 80 nm Ge without the top CeO<sub>2</sub> layer were used to measure the binding energy of CeO<sub>2</sub> and Ge, respectively.

of the charging by an electron flood source was used in all measurements to minimize the binding energy shift. Besides, the measured CLs and VBM binding energy values were corrected by shifting C1s CL peak to 285.0 eV. All XPS spectra were recorded using pass energy of 26 eV and a step size of 0.025 eV. Curve fitting was done by the CasaXPS 2.3.14 using a Lorentzian convolution with a Shirley-type background. Different Ce core level peaks corresponding to various oxidation states and spin-orbit splitting levels were separated during curve fitting as reported in the literatures.<sup>18,19,25–28</sup> For the Ce4d core level XPS spectra from 1.5 nm CeO<sub>2</sub>/80 nm Ge samples, all Ce4d peaks were deconvoluted from the overlapped Ge3p<sub>1/2</sub>, Ge3p<sub>3/2</sub> core level and related oxidation states using reported Ge3p core level binding energy values.<sup>29,30</sup>

After collecting the binding energy information from each sample surface, the VBO value can be determined by Kraut's method<sup>31</sup>

$$\Delta E_V = \left(E_{CL}^{Ge} - E_{VBM}^{Ge}\right) - \left(E_{CL}^{CeO2} - E_{VBM}^{CeO2}\right) + \Delta E_{CL}(i),\tag{1}$$

where  $E_{CL}^{Ge}$  and  $E_{CL}^{CeO2}$  are CL binding energies of Ge and CeO<sub>2</sub>, respectively. For Ge, the Ge3d CL binding energy peak was used in the measurement; for CeO<sub>2</sub>, the Ce3d CL peak was used for the determination of VBO and the shallow Ce4d CL binding energy was also used to confirm the VBO values obtained from Ce3d peaks.  $E_{VBM}^{Ge}$  and  $E_{VBM}^{CeO2}$  are the VBM of Ge and CeO<sub>2</sub>, respectively. E<sub>VBM</sub> of each material was determined by linearly fitting the leading edge of valence band spectra to the base line.  ${}^{32-34} E_{CL}^{CeO2} - E_{VBM}^{CeO2}$  and  $E_{CL}^{Ge} - E_{VBM}^{Ge}$  were measured from 20 nm CeO<sub>2</sub>/80 nm Ge and 80 nm Ge without the top CeO<sub>2</sub>, respectively.  $\Delta E_{CL}(i) = E_{CL}^{CeO2}(i) - E_{CL}^{Ge}(i)$  is the CL binding energy difference of Ce and Ge measured at the interface from 1.5 nm CeO<sub>2</sub>/80 nm Ge of each structure. Once the VBO was obtained, the CBO can be estimated by  ${}^{32-34}$ 

$$\Delta E_C = E_G^{CeO2} - \Delta E_V - E_G^{Ge},\tag{2}$$

where  $E_G^{CeO_2}$  and  $E_G^{Ge}$  are the band gap energies of CeO<sub>2</sub> and Ge, respectively. The band gap energy of CeO<sub>2</sub> film was determined by the Tauc's method<sup>35</sup> using variable angle spectroscopic ellipsometry employing a wavelength sweep from 300 to 800 nm at an increment of 5 nm.

### **III. RESULTS AND DISCUSSION**

### A. Material characterization

Figure 2 shows the cross-sectional TEM micrographs of  $CeO_2/(100)Ge/(100)GaAs$  heterostructure with different magnification. As shown in Fig. 2(a), there are no threading dislocations observed in Ge layer, as expected, due to the limited mismatch (~0.07%) between Ge and GaAs. The black spot in Fig. 2(a) is due to the artifact caused by sample preparation. A sharp heterointerface is displayed between Ge and (100)GaAs, indicating minimal interdiffusion which is



FIG. 2. Cross-sectional TEM micrographs of CeO<sub>2</sub>/Ge/(100)GaAs heterostructure with different magnification. (a) A sharp heterointerface is displayed between Ge and (100)GaAs, indicating minimal atom interdiffusion; (b) The bright contrast at CeO<sub>2</sub>/Ge interface shows the presence of an interfacial layer (~2 nm) consisting of the mixture of Ce-O-Ge formed spontaneously during oxide deposition; (c) The CeO<sub>2</sub> film deposited on (100)Ge is confirmed to be polycrystalline.

believed to be benefited from the separation of Ge and III-V MBE growth chambers. Figure 2(b) shows the interface between CeO<sub>2</sub> and (100)Ge with higher magnification revealing the presence of interfacial layer of ~2 nm formed spontaneously during the oxide deposition. Similar interfacial layer was also observed by other researchers at the CeO<sub>2</sub>/Ge interface.<sup>36</sup> This interfacial layer between CeO<sub>2</sub> and Ge is noticeably different from the interfacial layer between Ge and other oxide materials, such as HfO<sub>2</sub> (Ref. 37) and Al<sub>2</sub>O<sub>3</sub>.<sup>38</sup> which exhibit sharp nonreacting heterointerfaces and also contain unstable components of GeO<sub>x</sub>. Dimoulas *et al.*<sup>36</sup> reported that due to the catalytic properties of Ce, CeO<sub>2</sub> reacts strongly with Ge at the interface to produce an interfacial layer which contains a mixture of Ce-O-Ge oxide. Although other researchers reported that Ce passivates the Ge surface and helps to stabilize Ge in one or two oxidation states,<sup>36</sup> this interfacial layer may increase the equivalent oxide thickness of the oxide stack and degrade the performance of MOS devices. Further investigation is needed to confirm these prior findings. The CeO<sub>2</sub> film deposited on (100)Ge was polycrystalline as evident from Fig. 2(c). The room temperature crystallization of CeO<sub>2</sub> was also reported on (100)Si by electron beam evaporation<sup>39</sup> and on (100)LaAlO<sub>3</sub> by pulsed laser deposition.<sup>40</sup> The room temperature crystallization of CeO<sub>2</sub> may attribute to the large kinetic energy of Ce obtained from high energy electron beam during PVD deposition which would enhance surface migration for epitaxy.<sup>40</sup>

The optical band gap energy of  $CeO_2$  on (100)Ge was measured using the Tauc's method by fitting the absorption spectra to the transition equation by extrapolating the linear portions of the curves to the base line as shown in Fig. 3. The transition equation can be expressed as

$$\alpha h \upsilon = E_D (h \upsilon - E_G)^{1/2}, \tag{3}$$

where  $\alpha$  is the absorption coefficient, hv is the photon energy,  $E_G$  is the optical band gap energy, and  $E_D$  is a constant which does not depend on the photon energy.<sup>41</sup> The direct optical band gap of CeO<sub>2</sub> on (100)Ge was determined by plotting ( $\alpha$ hv)<sup>2</sup> versus hv as shown in Fig. 3. Using this method, the optical band gap energies of CeO<sub>2</sub> were measured to be 3.6 eV. The measured optical band gap energies of CeO<sub>2</sub> are in close agreements with the results reported by other researchers.<sup>42–44</sup>

## B. X-ray photoelectron spectroscopy analysis of Ce oxidation states

Ce has two common oxidation states,  $^{17-19,25-28}$  Ce<sup>3+</sup> and Ce<sup>4+</sup>, both of which were observed in Ce3d XPS spectra in this analysis. Figures 4(a)–4(c) show the Ce3d XPS spectra collected at an exit angle of 45° from 20 nm CeO<sub>2</sub> on (100), (110), and (111)Ge, respectively. As can be seen from Figs. 4(a)–4(c), there are 10 peak assignments within the Ce3d spectra on each Ge orientation. Different peak assignments



Fig. 3. (Color online) Direct optical band gap of CeO<sub>2</sub> on (100)Ge was determined to be 3.6 eV by plotting  $(\alpha hv)^2$  vs hv.



Fig. 4. (Color online) Ce 3d XPS spectra collected at an exit angle of 45° from 20 nm PVD deposited CeO<sub>2</sub> on (a) (100), (b) (110), and (c) (111)Ge, respectively. There are 10 peak assignments within the Ce 3d spectra on each Ge orientation. U and V refer to the  $3d_{3/2}$  and  $3d_{5/2}$  spin-orbit components, respectively. U, U", U", V, V", and V''' refer to Ce<sup>4+</sup> final states, while U<sup>0</sup>, U' and V<sup>0</sup>, V' refer to Ce<sup>3+</sup> final states. The Ce<sup>4+</sup>3d<sub>5/2</sub> binding energy peaks labeled as V were used to determine the band offset value between CeO<sub>2</sub> and Ge with each Ge orientation.

are labeled in the spectra following the convention established by Burroughs *et al.*,<sup>19</sup> where U and V refer to the  $3d_{3/2}$  and  $3d_{5/2}$  spin–orbit components, respectively. Besides, U, U", U", V, V" and V'" refer to Ce<sup>4+</sup> final states, while U<sup>0</sup>, U' and V<sup>0</sup>, V' refer to Ce<sup>3+</sup> final states.<sup>18,25–27</sup> For Ce<sup>4+</sup> peaks, the highest binding energy doublet U''/V'' at ~917 eV and ~898 eV are assigned to the final state of Ce<sup>4+</sup>3d<sup>9</sup>4f<sup>0</sup> O2p<sup>6.18</sup> The highest binding energy peak U''' is the best distinguishing characteristic peak to differentiate Ce<sup>4+</sup> and Ce<sup>3+</sup> states, which is generally not observed for 011217-4

pure Ce<sub>2</sub>O<sub>3</sub>.<sup>45</sup> Doublets U"/V" at ~907 and ~889 eV were attributed to the hybridization state of Ce<sup>4+</sup>3d<sup>9</sup>4f<sup>1</sup> O2p<sup>5</sup>, and doublet U/V at ~901 and ~882 eV correspond to the state of Ce<sup>4+</sup>3d<sup>9</sup>4f<sup>2</sup> O2p<sup>4</sup>.<sup>18</sup> For Ce<sup>3+</sup> peaks, the doublet U'/V' at ~904 and ~886 eV corresponds to Ce<sup>3+</sup>3d<sup>9</sup>4f<sup>2</sup> O2p<sup>5</sup> final states;<sup>39</sup> U<sup>0</sup>/V<sup>0</sup> peaks at ~899 eV and ~881 eV relating to Ce<sup>3+</sup>3d<sup>9</sup>4f<sup>1</sup> O<sup>2</sup>p<sup>6</sup> final states.<sup>25,26,28</sup> All the measured Ce3d XPS peaks with different final oxidation states were summarized in Table I.

The total fraction of  $Ce_2O_3$  in the PVD deposited  $CeO_2$ on epitaxial Ge were estimated by taking the percentage of fitted  $Ce^{3+}$  spectral weight to the total weight of the spectra and calculated using the following equation:<sup>16,18,28</sup>

$$\% Ce_2 O_3 = \frac{Ce^{3+}}{Ce^{3+} + Ce^{4+}} = \frac{U^0 + V^0 + U' + V'}{U^0 + V^0 + \sum_{n'} (U^{n'} + V^{n'})},$$
(4)

where n' is for all the final oxidation states. As there are no other Ce oxidation states detected in the CeO<sub>2</sub> films on epitaxial Ge except Ce<sup>4+</sup> and Ce<sup>3+</sup>, the fraction of CeO<sub>2</sub> can be calculated by

$$\% CeO_2 = 1 - \% Ce_2O_3. \tag{5}$$

The fitted peak areas in the XPS spectra as shown in Figs. 4(a)-4(c) were used to estimate the contribution of Ce<sub>2</sub>O<sub>3</sub> in the PVD deposited CeO<sub>2</sub> on (100), (110), and (111)Ge, respectively. The calculated Ce<sub>2</sub>O<sub>3</sub> and CeO<sub>2</sub> fractions are also summarized in Table I. The percentage of Ce<sub>2</sub>O<sub>3</sub> is 29.9%, 29.0%, and 28.3% within the PVD deposited CeO<sub>2</sub> on (100), (110), and (111)Ge, respectively, relating to the CeO<sub>2</sub> percentage of 70.1%, 71.0%, and 71.7% using an exit angle of  $45^{\circ}$ . As it has been reported that the Ce<sup>3+</sup> oxidation state is preferentially present at the surface of the oxide film,<sup>13</sup> angular resolved XPS measurements were performed in this study using a grazing exit angle of 25° and bulk-sensitive exit angle of  $75^{\circ}$  to identify the distribution. Detailed XPS analysis of the Ce3d spectra with different exit angles (spectra are not shown here) exhibited larger  $Ce^{3+}$ signal for the  $25^{\circ}$  grazing exit angle than for the  $75^{\circ}$ bulk-sensitive exit angle. The fitted peak positions and areas with different exit angles are also summarized in Table I. It can be seen from Table I that same final states,  $U^0$ , U, U', U'', U''' and  $V^0$ , V, V', V'', V''', were detected from the CeO<sub>2</sub> films with different exit angles. However, the percentage of Ce<sub>2</sub>O<sub>3</sub> is 35.1%, 34.5%, and 34.7% within the CeO<sub>2</sub> films on (100), (110), and (111)Ge, respectively, using a grazing exit angle of  $25^{\circ}$  but reduced to 24.8%, 25.2%, and 24.3% using an bulk-sensitive exit angle of 75°, indicating that more fraction of Ce<sub>2</sub>O<sub>3</sub> exists in the surface of the PVD deposited  $CeO_2$  films. The reduction of  $Ce^{4+}$  oxidation states in  $CeO_2$ films are also reported by other researchers, which is attributed to the result of the interaction with organics in the air before loading<sup>13</sup> into the XPS chamber or due to x-ray exposure in vacuum during XPS measurements<sup>46,47</sup> because of the catalytic properties of Ce. For convenience, we

| 20 nm Ce             | $O_2$ on (               | (100), (110), an                  | d (111)G       | e, respective      | ely. The i   | numbers in         | oold were    | e picked up        | for band     | offset deter       | mination     | •                  |              |                    |              |                    |              |                    |              |                    |
|----------------------|--------------------------|-----------------------------------|----------------|--------------------|--------------|--------------------|--------------|--------------------|--------------|--------------------|--------------|--------------------|--------------|--------------------|--------------|--------------------|--------------|--------------------|--------------|--------------------|
|                      |                          |                                   |                |                    |              |                    |              |                    |              |                    | Exi          | t angle            |              |                    |              |                    |              |                    |              |                    |
| -                    |                          |                                   | 25°            |                    |              |                    | 45°          |                    |              |                    | 75°          |                    |              |                    |              |                    |              |                    |              |                    |
|                      |                          | _                                 | Ge orientation |                    |              | Ge orientation     |              |                    |              | Ge orientation     |              |                    |              |                    |              |                    |              |                    |              |                    |
|                      |                          | -                                 | (              | 100)               | (            | 110)               | (            | 111)               | (            | 100)               | (            | 110)               | (            | 111)               | (            | 100)               | (            | 110)               | (            | 111)               |
| Peak<br>assignme     | nt                       | Ce<br>contribution                | Peak<br>(eV)   | Relative<br>area % | Peak<br>(eV) | Relative<br>area % | Peak<br>(eV) | Relative<br>area % | Peak<br>(eV) | Relative<br>area % | Peak<br>(eV) | Relative<br>area % | Peak<br>(eV) | Relative<br>area % | Peak<br>(eV) | Relative<br>area % | Peak<br>(eV) | Relative<br>area % | Peak<br>(eV) | Relative<br>area % |
|                      | $\mathbf{V}^0$           | 3+                                | 880.7          | 4.3                | 880.8        | 4.5                | 881.0        | 4.7                | 880.9        | 3.7                | 880.8        | 3.9                | 881.0        | 3.9                | 881.1        | 2.9                | 881.0        | 2.8                | 880.9        | 2.8                |
|                      | V                        | 4+                                | 882.4          | 23.6               | 882.6        | 22.5               | 882.5        | 22.7               | 882.5        | 22.4               | 882.6        | 21.1               | 882.6        | 22.2               | 882.5        | 22.9               | 882.6        | 24.2               | 882.5        | 23.6               |
|                      | $\mathbf{V}'$            | 3+                                | 885.7          | 15.8               | 885.5        | 17.6               | 885.7        | 14.8               | 885.6        | 15.7               | 885.6        | 14.6               | 885.8        | 15.1               | 885.7        | 13.1               | 885.6        | 13.1               | 885.6        | 13.8               |
|                      | $V^{\prime\prime}$       | 4+                                | 888.7          | 7.6                | 888.9        | 7.3                | 888.7        | 7.2                | 888.6        | 9.9                | 888.5        | 12.9               | 888.9        | 11.1               | 888.6        | 11.8               | 889.0        | 10.2               | 888.9        | 10.9               |
| Ce 3d <sub>5/2</sub> | $V^{\prime\prime\prime}$ | 4+                                | 898.5          | 14.7               | 898.4        | 13.5               | 898.6        | 14.1               | 898.5        | 13.7               | 898.5        | 14.2               | 898.8        | 13.2               | 898.6        | 15.8               | 898.6        | 15.6               | 898.5        | 15.5               |
|                      | $U^0$                    | 3+                                | 899.2          | 2.7                | 899.0        | 2.6                | 899.1        | 2.8                | 899.1        | 2.0                | 899.3        | 1.7                | 899.2        | 1.6                | 899.1        | 1.4                | 898.9        | 1.2                | 899.0        | 1.1                |
|                      | U                        | 4+                                | 900.9          | 7.4                | 900.8        | 10.9               | 900.9        | 10.1               | 901.0        | 10.5               | 901.3        | 9.7                | 901.2        | 11.1               | 901.2        | 9.2                | 901.2        | 10.4               | 901.1        | 9.8                |
|                      | $\mathrm{U}^\prime$      | 3+                                | 904.0          | 12.3               | 904.0        | 9.8                | 903.8        | 12.4               | 903.9        | 8.5                | 903.7        | 8.8                | 903.8        | 7.7                | 903.7        | 7.4                | 904.0        | 8.1                | 903.8        | 6.6                |
|                      | $U^{\prime\prime}$       | 4+                                | 907.2          | 3.3                | 907.4        | 2.8                | 907.4        | 3.2                | 907.3        | 4.9                | 907.2        | 4.9                | 907.3        | 5.3                | 906.9        | 7.4                | 907.1        | 5.9                | 906.7        | 6.9                |
| Ce 3d <sub>3/2</sub> | $U^{\prime\prime\prime}$ | 4+                                | 916.9          | 8.3                | 916.7        | 8.5                | 916.8        | 8.0                | 916.8        | 8.7                | 916.8        | 8.2                | 916.9        | 8.8                | 916.8        | 8.2                | 916.9        | 8.5                | 916.8        | 9.0                |
| Perc                 | entage                   | of Ce <sub>2</sub> O <sub>3</sub> |                | 35.1               | 3            | 34.5               | 3            | 34.7               |              | 29.9               | 1            | 29.0               | 2            | 28.3               | 1            | 24.8               | 2            | 25.2               | 2            | 24.3               |
| Perc                 | entage                   | of CeO <sub>2</sub>               |                | 64.9               | (            | 55.5               | (            | 55.3               |              | 70.1               | ,            | 71.0               | ,            | 71.7               | ,            | 75.2               | ,            | 74.8               | -            | 15.7               |

TABLE I. Summary of peak position and relative area of Ce3d peaks with different final oxidation states. Three different exit angles were used to detect the percentage of  $Ce^{3+}$  final states within the PVD deposited 20 nm CeO<sub>2</sub> on (100). (110). and (111)Ge, respectively. The numbers in **bold** were picked up for band offset determination.

consistently refer to the layer as  $CeO_2$  in this study, despite the possibly thin  $Ce^{3+}$  layer near the surface.

# C. Band alignment of CeO<sub>2</sub>/Ge structures using Ce3d core level states

XPS measurements were performed on all these structures with different CeO2 thickness and different Ge orientations to determine the band offset values, as descried above. Due to the strong binding energy signal and well defined peak shape, the  $Ce^{4+}$  final state  $Ce^{4+}3d_{5/2}^{9}4f^2 O2p^4$ , labeled as peak V in Figs. 4(a)-4(c), were selected for the determination of band offset values. It should be noted that other Ce<sup>4+</sup>3d oxidation states were also used to verify the band offset values obtained from peak V and the VBO value difference is within  $\pm 0.1 \,\text{eV}$ , which is within the error range we labeled in this work. Figures 4(a) and 5(a) show the Ce3d CL and CeO<sub>2</sub> VB spectra from 20 nm CeO<sub>2</sub>/80 nm (100)Ge. Figures 5(b) and 5(c) show Ge3d CL and Ce3d CL spectra measured from 1.5 nm CeO<sub>2</sub>/80 nm (100)Ge at the interface, all of which are measured using an exit angle of 45°. As can be seen from the Ge 3d CL spectra shown in Fig. 5(b), both Ge-Ge and Ge-O bond states are detected. The Ge-O bond states may come from the interfacial layer at Ge/CeO<sub>2</sub>

(a)

b

Ge 3d Intensity (a.u.) ntensity (a.u.) 29.8eV Ge-O VBM 2.3eV 2 32 31 30 29 28 8 6 4 0 -2 -4 33 Binding Energy (eV) **Binding Energy (eV)** 2.4x10 V: 882.1eV 2.3x10 2.2x10 **Intervention** 2.1x10<sup>4</sup> 2.0x10<sup>4</sup> 1.9x10<sup>4</sup> 1.8x10<sup>4</sup> 1.7x10<sup>4</sup> (c) T 10 1.6x10 1.5nm CeO<sub>2</sub> on (100)Ge  $1.5 \times 10^4$ 920 **910** 900 890 880 **Binding Energy (eV)** FIG. 5. (Color online) XPS spectra of (a) CeO<sub>2</sub> valence band from 20 nm CeO<sub>2</sub>/80 nm (100)Ge; (b) Ge3d core level and (c) Ce3d core level spectra measured from 1.5 nm CeO2/80 nm (100)Ge at the interface. Core level

spectra curves were fitted using a Lorentzian convolution with a Shirley-type background. Valence band maxima were determined by linearly fitting the leading edge of the valence band spectra to the base line.

|                                |                     | Ge orientation |                    |              |                    |              |                    |  |
|--------------------------------|---------------------|----------------|--------------------|--------------|--------------------|--------------|--------------------|--|
|                                |                     | (              | 100)               | (            | 110)               | (111)        |                    |  |
| Peak<br>assignment             | Cerium contribution | Peak<br>(eV)   | Relative<br>area % | Peak<br>(eV) | Relative<br>area % | Peak<br>(eV) | Relative<br>area % |  |
| $V^0$                          | 3+                  | 880.8          | 3.8                | 880.7        | 3.9                | 880.8        | 3.9                |  |
| V                              | 4+                  | 882.1          | 20.2               | 882.2        | 20.5               | 882.0        | 18.3               |  |
| $\mathbf{V}'$                  | 3+                  | 885.2          | 18.7               | 885.3        | 21.5               | 885.3        | 18.8               |  |
| V''                            | 4+                  | 888.1          | 9.3                | 888.2        | 8.9                | 888.4        | 9.5                |  |
| V'''                           | 4+                  | 898.1          | 10.6               | 898.2        | 8.0                | 898.2        | 11.4               |  |
| $U^0$                          | 3+                  | 898.8          | 2.7                | 899.0        | 2.8                | 899.0        | 2.2                |  |
| U                              | 4+                  | 900.6          | 9.2                | 901.0        | 11.5               | 900.7        | 8.4                |  |
| $\mathrm{U}^{\prime}$          | 3+                  | 903.4          | 13.9               | 903.5        | 11.9               | 903.3        | 14.1               |  |
| $U^{\prime\prime}$             | 4+                  | 906.9          | 5.5                | 906.8        | 6.5                | 906.8        | 7.3                |  |
| $U^{\prime\prime\prime}$       | 4+                  | 916.3          | 6.1                | 916.4        | 4.5                | 916.3        | 6.1                |  |
| Percentag                      | 39.1                |                | 40.1               |              | 39.0               |              |                    |  |
| Percentage of CeO <sub>2</sub> |                     | 60.9           |                    | 4            | 59.9               | 61.0         |                    |  |

interface as detected from the TEM analysis. Similar Ge-O peaks were also detected in early studies of the HfO<sub>2</sub> on Ge.<sup>4,5</sup> The fitted peak positions and areas of Ce3d binding energy peaks from 1.5 nm CeO<sub>2</sub>/80 nm (100)Ge structure are summarized in Table II. The Ge3d CL and Ge VBM binding energy from 80 nm (100)Ge without the top CeO<sub>2</sub> were premeasured and can be found elsewhere.<sup>4-6</sup> The CL to VBM binding energy difference for CeO<sub>2</sub> and (100)Ge are summarized in Table III. The results show that the value of  $(E_{Ce3d(V)}^{Ce02} - E_{VBM}^{Ce02})$  is about 880.2 eV. The premeasured value of  $(E_{Ge3d}^{Ge} - E_{VBM}^{Ge})$  is 29.5 eV, reported earlier in Ref. 6. The binding energy difference between the  $Ce^{4+}3d_{5/2}(V)$ and the Ge3d states at the interface ( $\Delta E_{CL}(i)$ ) was found to be 852.3 eV. Using these results, the VBO of (100)Ge with respect to  $CeO_2$  is determined to be  $1.6 \pm 0.1 \text{ eV}$ . The uncertain value of 0.1 eV is from the curve fitting process together

TABLE III. Summary of core level to valence band maxima binding energy difference (eV) for CeO<sub>2</sub> and Ge, and the binding energy difference between Ce<sup>4+</sup>3d<sub>5/2</sub> (peak V) and Ge3d at the interface ( $\Delta E_{CL}(i)$ ) from (100), (110), and (111)Ge, respectively, with an exit angle of 45°. The measured valence band offset ( $\Delta E_V$ ) is also listed in the table. The conduction band offset values are calculated using the band gap energy of Ge and the measured optical band gap energy of CeO<sub>2</sub>.

|                                              |       | Ge orientation |       |
|----------------------------------------------|-------|----------------|-------|
| Peak assignment                              | (100) | (110)          | (111) |
| $E_{Ce3d(V)}^{CeO2}$ (eV)                    | 882.5 | 882.6          | 882.6 |
| $E_{VBM}^{CeO2}$ (eV)                        | 2.3   | 2.4            | 2.5   |
| $E_{Ge3d}^{Ge} - E_{VBM}^{Ge}$ (eV) (Ref. 6) | 29.5  | 29.4           | 29.6  |
| $E_{Ce3d(V)}^{CeO2}(i)$ (eV)                 | 882.1 | 882.2          | 882.0 |
| $E_{Ge3d}^{Ge}(i)$ (eV)                      | 29.8  | 29.9           | 29.9  |
| $\Delta E_V$ (eV)                            | 1.6   | 1.5            | 1.6   |
| $\Delta E_C(\text{eV})$                      | 1.3   | 1.4            | 1.3   |



FIG. 6. (Color online) XPS spectra of (a)  $CeO_2$  valence band from 20 nm  $CeO_2/80$  nm (110)Ge, (b) Ge3d core level, and (c) Ce3d core level spectra measured from 1.5 nm  $CeO_2/80$  nm (110)Ge at the interface. Core level spectra curves were fitted using a Lorentzian convolution with a Shirley-type background. Valence band maxima were determined by linearly fitting the leading edge of the valence band spectra to the base line.

with the scatter of VB curve during the fitting of VBM position. Similar measurements were also performed on CeO<sub>2</sub>/(110)Ge and CeO<sub>2</sub>/(111)Ge structures. The CL and VB spectra from CeO<sub>2</sub>/(110)Ge and CeO<sub>2</sub>/(111)Ge were shown in Figs. 6(a)–6(c) and 7(a)–7(c), respectively. The peak positions, area of each peak, compositions of Ce<sub>2</sub>O<sub>3</sub> and CeO<sub>2</sub> from 20 nm CeO<sub>2</sub>/80 nm Ge structure are also summarized in Table I; the measured and fitted results from 1.5 nm CeO<sub>2</sub>/80 nm Ge structure are summarized in Table II. The measured and calculated values of  $(E_{Ce3d(V)}^{CeO2} - E_{VBM}^{CeO2})$  and  $(\Delta E_{CL}(i))$  from CeO<sub>2</sub>/(110)Ge and CeO<sub>2</sub>/(111)Ge are summarized in Table III. The calculated VBO is 1.5 ± 0.1 eV for CeO<sub>2</sub>/(110)Ge and 1.6 ± 0.1 eV for CeO<sub>2</sub>/(111)Ge.

The CBO values of all three structures are estimated from Eq. (2) using bandgap energies of CeO<sub>2</sub> and Ge together with the measured VBO values. The measured optical bandgap of CeO<sub>2</sub> using Tauc's method<sup>35</sup> is 3.6 eV as discussed in Sec. III A. The well-known Ge bandgap energy of 0.67 eV (Refs. 4–6) was used for the determination of CBO in this study. The CBO was calculated to be ~1.3 eV for CeO<sub>2</sub>/(100)Ge, ~1.4 eV for CeO<sub>2</sub>/(110)Ge, and ~1.3 eV for CeO<sub>2</sub>/(111)Ge. All calculated CBO values are summarized in Table III.



Fig. 7. (Color online) XPS spectra of (a)  $CeO_2$  valence band from 20 nm  $CeO_2/80$  nm (111)Ge, (b) Ge3d core level, and (c) Ce3d core level spectra measured from 1.5 nm  $CeO_2/80$  nm (111)Ge at the interface. Core level spectra curves were fitted using a Lorentzian convolution with a Shirley-type background. Valence band maxima were determined by linearly fitting the leading edge of the valence band spectra to the base line.

## D. Band alignment of CeO<sub>2</sub>/Ge structures using Ce4d shallow core level states

In order to confirm the band alignment values obtained from Ce3d spectra, shallow CL spectra of Ce4d were also recorded. Figures 8(a) and 8(b) show the Ce4d CL binding energy spectra from 20 nm CeO<sub>2</sub>/80 nm (100)Ge and 1.5 nm CeO<sub>2</sub>/80 nm (100)Ge, respectively. Curve fitting was performed to deconvolute Ge3p<sub>1/2</sub>, Ge3p<sub>3/2</sub>, and related oxidation peaks from Ce4d states using the reported Ce and Ge binding energy peak positions and the corresponding intensity ratios in the range of 120-130 eV.<sup>25-30</sup> The measured and fitted Ce4d spectra in this study is similar as to that of Ce4d spectra for CeO<sub>2</sub> reported by Burroughs *et al.*<sup>19</sup> and Mullins et al.<sup>26</sup> According to the notation and interpretation of Mullins *et al.*,<sup>26</sup> the doublets X''' and W''' locate at ~122 and  $\sim 126 \text{ eV}$  relate to  $\text{Ce}^{4+}4\text{d}^94\text{f}^0$   $\text{O2p}^6$  hybridization state in which X''' and W''' corresponds to Ce4d<sub>5/2</sub> and Ce4d<sub>3/2</sub> components, respectively. These two peaks are absent in the spectra of  $Ce^{3+}$  oxide states.<sup>17,18,26</sup> The peaks labeling as A (~109 eV), B (~112 eV), and C (~115 eV) are ascribed to  $Ce^{4+}4d^{9}4f^{1} O2p^{5} + Ce^{4+}4d^{9}4f^{2} O2p^{4}$  final states.<sup>18,26</sup> The emission between 117 and 120 eV in the Ce4d binding energy spectra were also reported by Wang et al.<sup>18</sup> and



FIG. 8. (Color online) Ce4d core level XPS spectra measured from (a) 20 nm CeO<sub>2</sub>/80 nm (100)Ge structure and (b) 1.5 nm CeO<sub>2</sub>/80 nm (100)Ge structure. The Ce4d core level XPS spectra were deconvoluted to obtain all Ce4d peaks from the overlapped Ge3p<sub>1/2</sub>, Ge3p<sub>3/2</sub>, and related oxidation states. Core level spectra curves were fitted using a Lorentzian convolution with a Shirley-type background.

Mullins *et al.*<sup>26</sup> but were not identified. Besides, another peak at ~129 eV can be found from the Ce4d binding energy spectra in our study, which is absent in earlier studies. Further investigations are needed to identify the nature of this peak. Peak positions of Ce4d binding energy with different final oxidation states from 20 nm CeO<sub>2</sub>/80 nm (100)Ge are summarized in Table IV. Ce4d and Ge3p as well as related oxidation state peak positions from 1.5 nm CeO<sub>2</sub>/80 nm (100)Ge are summarized in Table V.

The Ce4d<sup>4+</sup> final state labeled as peak B in Figs. 8(a) and 8(b) were used to determine the band offset value between CeO<sub>2</sub> and (100)Ge due to its well defined peak shape and strong intensity. The Ce4d<sup>4+</sup> (peak B) CL to VBM binding energy difference for CeO<sub>2</sub> are summarized in Table VI. The  $(E_{Ge3d}^{Ge} - E_{VBM}^{Ge})^6$  and  $[\Delta E_{CL}(i) = E_{Ce4d(B)}^{Ce}(i) - E_{Ge3d}^{Ge}(i)]$  values are also summarized in Table VI. Using these results, the VBO of (100)Ge with respect to CeO<sub>2</sub> was determined to be 1.6 ± 0.1 eV, which is in agreement with VBO value obtained using Ce3d CL peaks. Similar measurements were also performed on CeO<sub>2</sub>/(110)Ge and CeO<sub>2</sub>/(111)Ge structures. The Ce4d CL spectra from CeO<sub>2</sub>/(110)Ge and CeO<sub>2</sub>/(111)Ge with different CeO<sub>2</sub> thickness are shown in Figs. 9(a), 9(b), 10(a), and 10(b), respectively. Tables IV and V summarized the Ce4d CL peak positions from 20 nm

TABLE IV. Summary of peak position of Ce4d binding energy peaks with different final oxidation states from 20 nm PVD deposited CeO<sub>2</sub> on (100), (110), and (111)Ge, respectively. An exit angle of  $45^{\circ}$  was used. The Ce4d core level XPS spectra were deconvoluted to obtain all Ce4d peaks from the overlapped Ge3p<sub>1/2</sub>, Ge3p<sub>3/2</sub>, and related oxidation states. The numbers in bold were considered for band offset determination.

|                        |                     | Ge orientation |       |       |  |  |
|------------------------|---------------------|----------------|-------|-------|--|--|
| Peak assignment        | Cerium contribution | (100)          | (110) | (111) |  |  |
| A                      | 4+                  | 108.7          | 108.7 | 108.8 |  |  |
| В                      | 4+                  | 111.9          | 111.9 | 112.1 |  |  |
| С                      | 4+                  | 115.1          | 114.8 | 115.5 |  |  |
| Ge3p <sub>3/2</sub>    | _                   | 121.7          | 121.6 | 121.8 |  |  |
| X'"                    | 4+                  | 122.4          | 122.2 | 122.6 |  |  |
| W'''                   | 4+                  | 125.7          | 125.4 | 125.8 |  |  |
| Ge3p <sub>3/2</sub> -O | _                   | 125.8          | 125.5 | 125.9 |  |  |
| Ge3p <sub>1/2</sub>    | _                   | 125.9          | 125.6 | 126.0 |  |  |
| Ge3p <sub>1/2</sub> -O |                     | 129.3          | 129.5 | 129.6 |  |  |

CeO<sub>2</sub>/80 nm Ge and 1.5 nm CeO<sub>2</sub>/80 nm Ge with different Ge orientations, respectively. The measured values of  $(E_{Ce4d(B)}^{CeO2} - E_{VBM}^{CeO2})$  and  $(\Delta E_{CL}(i))$  from CeO<sub>2</sub>/(110)Ge and CeO<sub>2</sub>/(111)Ge are summarized in Table VI. The calculated VBO is  $1.6 \pm 0.1 \text{ eV}$  for CeO<sub>2</sub>/(110)Ge and  $1.6 \pm 0.1 \text{ eV}$  for CeO<sub>2</sub>/(111)Ge, both of which are in close agreement with the VBO values obtained from Ce3d CL peaks. The small difference in VBO value may be caused by the fitting of CL peaks and the VBM position. The CBO of all three structures were calculated from Eq. (2) and also summarized in Table VI.

Figure 11 shows the schematic band alignment diagram for the CeO<sub>2</sub>/Ge structures based on the results presented above. The measured VBO and calculated CBO are also labeled in this figure. Figure 12 shows the histogram of  $\Delta E_V$ and  $\Delta E_C$  distribution of PVD deposited CeO<sub>2</sub> on (100), (110), and (111)Ge, respectively. It can be seen from this figure that although the band gap energy of CeO<sub>2</sub> is lower compared with other common used high- $\kappa$  gate dielectric such as

TABLE V. Summary of peak position of Ce4d binding energy peaks with different final oxidation states from 1.5 nm PVD deposited CeO<sub>2</sub> on (100), (110), and (111)Ge, respectively. An exit angle of 45° was used. The Ce4d core level XPS spectra were deconvoluted to obtain all Ce4d peaks from the overlapped Ge3p<sub>1/2</sub>, Ge3p<sub>3/2</sub>, and related oxidation states. The numbers in bold were considered for band offset determination.

|                        |                     | Ge orientation |       |       |  |  |
|------------------------|---------------------|----------------|-------|-------|--|--|
| Peak assignment        | Cerium contribution | (100)          | (110) | (111) |  |  |
| A                      | 4+                  | 108.2          | 108.3 | 108.1 |  |  |
| В                      | 4+                  | 111.5          | 111.6 | 111.5 |  |  |
| С                      | 4+                  | 114.8          | 114.6 | 114.9 |  |  |
| Ge3p <sub>3/2</sub>    | _                   | 121.6          | 121.6 | 121.5 |  |  |
| X'''                   | 4+                  | 121.9          | 122.0 | 121.9 |  |  |
| W'''                   | 4+                  | 125.0          | 125.1 | 125.0 |  |  |
| Ge3p <sub>3/2</sub> -O | _                   | 125.1          | 125.0 | 124.8 |  |  |
| Ge3p <sub>1/2</sub>    | _                   | 125.6          | 125.5 | 125.4 |  |  |
| Ge3p <sub>1/2</sub> -O | —                   | 129.1          | 129.0 | 128.8 |  |  |

TABLE VI. Summary of core level to valence band maxima binding energy difference (eV) for CeO<sub>2</sub> and Ge, and the binding energy difference between Ce<sup>4+</sup>4d<sub>5/2</sub> (peak B) and Ge3d at the interface ( $\Delta E_{CL}(i)$ ) from (100), (110), and (111)Ge, respectively, with an exit angle of 45°. The measured valence band offset ( $\Delta E_V$ ) is also listed in the table. The conduction band offset values are calculated using the band gap energy of Ge and the measured optical band gap energy of CeO<sub>2</sub>.

|                                              | Ge orientation |       |       |  |  |  |  |
|----------------------------------------------|----------------|-------|-------|--|--|--|--|
| Peak assignment                              | (100)          | (110) | (111) |  |  |  |  |
| $E_{Ce4d(B)}^{Ce02}$ (eV)                    | 111.9          | 111.9 | 112.1 |  |  |  |  |
| $E_{VBM}^{CeO2}$ (eV)                        | 2.3            | 2.4   | 2.5   |  |  |  |  |
| $E_{Ge3d}^{Ge} - E_{VBM}^{Ge}$ (eV) (Ref. 6) | 29.5           | 29.4  | 29.6  |  |  |  |  |
| $E_{Ce4d(B)}^{CeO2}(i)$ (eV)                 | 111.5          | 111.6 | 111.5 |  |  |  |  |
| $E_{Ge_{3d}}^{Ge}(i)$ (eV)                   | 29.8           | 29.9  | 29.9  |  |  |  |  |
| $\Delta E_V (eV)$                            | 1.6            | 1.6   | 1.6   |  |  |  |  |
| $\Delta E_C(\text{direct}) (\text{eV})$      | 1.3            | 1.3   | 1.3   |  |  |  |  |

Al<sub>2</sub>O<sub>3</sub> (~6.5 eV)<sup>6</sup> and HfO<sub>2</sub> (~5.6 eV),<sup>4</sup> it can still provide more than 1 eV band offset on (100), (110), and (111)Ge for both conduction and valence band. Further investigations are needed to study the electrical properties of utilizing CeO<sub>2</sub> as a high- $\kappa$  gate dielectric on Ge. The measured band offset



Fig. 9. (Color online) Ce4d core level XPS spectra measured from (a) 20 nm CeO<sub>2</sub>/80 nm (110)Ge structure and (b) 1.5 nm CeO<sub>2</sub>/80 nm (110)Ge structure. The Ce4d core level XPS spectra were deconvoluted to obtain all Ce4d peaks from the overlapped Ge3p<sub>1/2</sub>, Ge3p<sub>3/2</sub>, and related oxidation states. Core level spectra curves were fitted using a Lorentzian convolution with a Shirley-type background.



**Binding Energy (eV)** FIG. 10. (Color online) Ce4d core level XPS spectra measured from (a) 20 nm CeO<sub>2</sub>/80 nm (111)Ge structure and (b) 1.5 nm CeO<sub>2</sub>/80 nm (111)Ge structure. The Ce4d core level XPS spectra were deconvoluted to obtain all

20 nm CeO<sub>2</sub>/80 nm (111)Ge structure and (b) 1.5 nm CeO<sub>2</sub>/80 nm (111)Ge structure. The Ce4d core level XPS spectra were deconvoluted to obtain all Ce4d peaks from the overlapped Ge3p<sub>1/2</sub>, Ge3p<sub>3/2</sub>, and related oxidation states. Core level spectra curves were fitted using a Lorentzian convolution with a Shirley-type background.

values as well as the study of interface properties between  $CeO_2$  and Ge will provide a promising reference for the design of Ge based MOS devices.



FIG. 11. (Color online) Schematic of the band-energy diagram of  $CeO_2/Ge$  interface. The measured valence band offset value and calculated conduction band offset values are also labeled in this figure.



Fig. 12. (Color online) Histogram of band offset distribution obtained from  $CeO_2/Ge$  interface with different Ge orientations.

### **IV. CONCLUSION**

CeO<sub>2</sub> oxide layers were deposited using physical vapor deposition on epitaxial (100), (110), and (111)Ge layers. Transmission electron microscopy studies showed the polycrystalline nature of CeO<sub>2</sub> film. X-ray photoelectron spectroscopy analysis showed multiple Ce3d and Ce4d oxidation states with a mixture of  $Ce^{3+}$  and  $Ce^{4+}$  components present inside the CeO<sub>2</sub> film. Angular resolved XPS investigations indicated that Ce<sup>3+</sup> oxidation states preferred to be present near the surface of the oxide film and the PVD deposited  $CeO_2$  films mostly consisted of  $Ce^{4+}$  oxidation states. Valence band offset values of 1.6, 1.5, and 1.6 eV were obtained from  $CeO_2/(100)Ge$ ,  $CeO_2/(110)Ge$ , and CeO<sub>2</sub>/(111)Ge, respectively, using XPS measurements from Ce3d core level peaks. Shallow Ce4d CL binding energy peaks were also used to verify the valence band offset values, and the results are in close agreement with those obtained from Ce3d peaks. The conduction band offset values between CeO<sub>2</sub>/Ge are  $\sim$ 1.3 eV using the measured optical bandgap of CeO2. The XPS analysis and band offset studies of CeO2/Ge with different Ge orientations would offer important guidance for future design of Ge-based metal-oxide-semiconductor devices.

### ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation under Grant No. ECCS-1348653. The authors (S.P., D.M., and R.V.) acknowledge the financial support from Office of Basic Energy Science, Department of Energy, through Grant No. DE-FG02-06ER46290. Authors would also like to thank Jerry Hunter and Andrew Giordani, Virginia Tech, for assisting angular resolved XPS measurements.

- <sup>2</sup>S. H. Lo, D. A. Buchanan, Y. Taur, and W. I. Wang, IEEE Electron Device Lett. **18**, 209 (1997).
- <sup>3</sup>Y. Zhu and M. K. Hudait, "Low-power tunnel field effect transistors using mixed As and Sb based heterostructures," Nanotechnol. Rev. 2, 637 (2013).
- <sup>4</sup>M. K. Hudait, Y. Zhu, D. Maurya, and S. Priya, Appl. Phys. Lett. **102**, 093109 (2013).
- <sup>5</sup>M. K. Hudait and Y. Zhu, J. Appl. Phys. **113**, 114303 (2013).
- <sup>6</sup>M. K. Hudait, Y. Zhu, D. Maurya, S. Priya, P. K. Patra, A. W. K. Ma, A. Aphale, and I. Macwan, J. Appl. Phys. **113**, 134311 (2013).
- <sup>7</sup>M. S. Rahman, E. K. Evangelou, I. I. Androulidakis, and A. Dimoulas, Electrochem. Solid-State Lett. **12**, H165 (2009).
- <sup>8</sup>W.-C. Shih, C.-H. Chen, F.-C. Chiu, C.-M. Lai, and H.-L. Hwang, ECS Trans. **28**, 435 (2010).
- <sup>9</sup>V. V. Afanas'ev, S. Shamuilia, A. Stesmans, A. Dimoulas, Y. Panayiotatos, A. Sotiropoulos, M. Houssa, and D. P. Brunco, Appl. Phys. Lett. 88, 132111 (2006).
- <sup>10</sup>Y. Nishikawa, D. Matsushita, N. Satou, M. Yoshiki, T. Schimizu, T. Yamaguchi, H. Satake, and N. Fukushima, J. Electrochem. Soc. **151**, F202 (2004).
- <sup>11</sup>M. K. Hudait, Y. Zhu, N. Jain, S. Vijayaraghavan, A. Saha, T. Merritt, and G. A. Khodaparast, J. Vac. Sci. Technol., B 30, 051205 (2012).
- <sup>12</sup>M. K. Hudait, Y. Zhu, N. Jain, and J. J. L. Hunter, J. Vac. Sci. Technol., B 31, 011206 (2013).
- <sup>13</sup>D. P. Brunco *et al.*, J. Appl. Phys. **102**, 024104 (2007).
- <sup>14</sup>W.-H. Kim, W. J. Maeng, M.-K. Kim, J. Gatineau, and H. Kim, J. Electrochem. Soc. **158**, G217 (2011).
- <sup>15</sup>J. Robertson and B. Falabretti, J. Appl. Phys. **100**, 014111 (2006).
- <sup>16</sup>M. Baron, O. Bondarchuk, D. Stacchiola, S. Shaikhutdinov, and H. J. Freund, J. Phys. Chem C 113, 6042 (2009).
- <sup>17</sup>J. Rebellato, M. M. Natile, and A. Glisenti, Appl. Catal., A **339**, 108 (2008).
- <sup>18</sup>A. Q. Wang, P. Punchaipetch, R. M. Wallace, and T. D. Golden, J. Vac. Sci. Technol., B 21, 1169 (2003).
- <sup>19</sup>P. Burroughs, A. Hamnett, A. F. Orchard, and G. Thornton, J. Chem. Soc., Dalton Trans. **1976**, 1686 (1976).
- <sup>20</sup>J. H. Choi, Y. Mao, and J. P. Chang, Mater. Sci. Eng., R 72, 97 (2011).
- <sup>21</sup>S. Dissanayake, K. Tomiyama, S. Sugahara, M. Takenaka, and S. Takagi, Appl. Phys. Express **3**, 041302 (2010).
- <sup>22</sup>M. Perego and G. Seguini, J. Appl. Phys. **110**, 053711 (2011).
- <sup>23</sup>M. Perego, A. Molle, and G. Seguini, Appl. Phys. Lett. **101**, 211606 (2012).
- <sup>24</sup>W. F. Zhang, T. Nishimula, K. Nagashio, K. Kita, and A. Toriumi, Appl. Phys. Lett. **102**, 102106 (2013).
- <sup>25</sup>C. Anandan and P. Bera, Appl. Surf. Sci. **283**, 297 (2013).
- <sup>26</sup>D. R. Mullins, S. H. Overbury, and D. R. Huntley, Surf. Sci. 409, 307 (1998).
- <sup>27</sup>K.-D. Schierbaum, Surf. Sci. 399, 29 (1998).
- <sup>28</sup>E. J. Preisler, O. J. Marsh, R. A. Beach, and T. C. McGill, J. Vac. Sci. Technol., B **19**, 1611 (2001).
- <sup>29</sup>T. Ueno and A. Odajima, Jpn. J. Appl. Phys., Part 2 21, 230 (1982).
- <sup>30</sup>T. Ueno, Jpn. J. Appl. Phys., Part 2 22, 1349 (1983).
- <sup>31</sup>E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980).
- <sup>32</sup>Y. Zhu, N. Jain, D. K. Mohata, S. Datta, D. Lubyshev, J. M. Fastenau, A. K. Liu, and M. K. Hudait, J. Appl. Phys. **113**, 024319 (2013).
- <sup>33</sup>Y. Zhu, N. Jain, D. K. Mohata, S. Datta, D. Lubyshev, J. M. Fastenau, A. K. Liu, and M. K. Hudait, Appl. Phys. Lett. **101**, 112106 (2012).
- <sup>34</sup>Y. Zhu et al., J. Appl. Phys. **112**, 094312 (2012).
- <sup>35</sup>J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).
- <sup>36</sup>A. Dimoulas *et al.*, Thin Solid Films **515**, 6337 (2007).
- <sup>37</sup>J. W. Seo, P. C. mcIntyre, S. Sun, D. I. lee, P. Pianetta, and K. C. Saraswat, Appl. Phys. Lett. 87, 221906 (2005).
- <sup>38</sup>S. J. Lee, C. Zhu, and D. L. Kwong, in *Advanced Gate Stacks for High-Mobility Semiconductors*, edited by A. Dimoulas, E. Gusev, P. C. McIntyre, and M. Heyns (Springer, Berlin, 2007).
- <sup>39</sup>T. Ami, Y. Ishida, N. Nagasawa, A. Machida, and M. Suzuki, Appl. Phys. Lett. **78**, 1361 (2001).
- <sup>40</sup>Y. T. Ho, K. S. Chang, K. C. Liu, L. Z. Hsieh, and M. H. Liang, Cryst. Res. Technol. 48, 308 (2013).
- <sup>41</sup>M. M. Hasan, A. S. M. A. Haseeb, R. Saidur, and H. H. Masjuki, World Acad. Sci., Eng. Technol. 16, 221 (2008).

<sup>&</sup>lt;sup>1</sup>N. Yang, W. K. Henson, and J. J. Wortman, *Proceedings of IEEE International Electron Devices Meeting (IEDM)* (IEEE, Baltimore, MD, 2009), p. 453.

### 011217-11 Zhu et al.: Characterization of CeO<sub>2</sub> layer deposited on epitaxial Ge

- <sup>42</sup>T. V. Semikina, Semicond. Phys., Quantum Electron. Optoelectron. 7, 291 (2004). <sup>43</sup>L. Truffault *et al.*, Mater. Res. Bull. **45**, 527 (2010).
- <sup>44</sup>S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P. L. Anderson, and S. Seraphin, Cryst. Growth Des. 7, 950 (2007).
- <sup>45</sup>F. Le Normand, L. Hilaire, K. Kili, G. Krill, and G. Maire, J. Phys. Chem. 92, 2561 (1988).
- <sup>46</sup>F. Zhang, P. Wang, J. Koberstein, S. Khalid, and S. W. Chan, Surf. Sci. 563, 74 (2004).
- <sup>47</sup>T. Shripathi and M. V. R. Rao, J. Electron Spectrosc. Relat. Phenom. 87, 121 (1997).